The length and width of a new rectangle playing field are 214 yards and 52 yards respectively.
<h3>What is the area of the rectangle?</h3>
It is defined as the area occupied by the rectangle in two-dimensional planner geometry.
The area of a rectangle can be calculated using the following formula:
Rectangle area = length x width
We have:
The length of a new rectangle playing field is 6 yards longer than quadruple the width.
Let's suppose the length is l and width is w of a rectangle:
From the problem:
l = 6 + 4w
Perimeter P = 2(l + w)
532 = 2(l + w)
Plug l = 6+4w in the above equation:
532 = 2(6 + 4w + w)
266 = 6 + 5w
260 = 5w
w = 52 yards
l = 6 +4(52) = 214 yards
Thus, the length and width of a new rectangle playing field are 214 yards and 52 yards respectively.
Learn more about the area of rectangle here:
brainly.com/question/15019502
#SPJ1
Answer:
5.441683e+23
Step-by-step explanation:
Hope it helped brainiest plz
Answer:
OPTION A: 2x + 3y = 5
Step-by-step explanation:
The product of slopes of two perpendicular lines is -1.
We rewrite the given equation as follows:
2y = 3x + 2
⇒ y = 
The general equation of the line is: y = mx + c, where 'm' is the slope of the line.
Here, m =
.
Therefore, the slope of the line perpendicular to the line given =
because
.
To determine the equation of the line passing through the given point and a slope we use the Slope - One - point formula which is:
y - y₁ = m(x - x₁)
The point is: (x₁, y₁) = (-2, 3)
Therefore, the equation is:
y - 3 =
(x + 2) $
⇒ 3y - 9 = -2(x + 2)
⇒ 3y - 9 = -2x - 4
⇒ 2x + 3y = 5 is the required equation.