Answer:
-6.326 KJ/K
Explanation:
A) the entropy change is defined as:

In an isobaric process heat (Q) is defined as:

Replacing in the equation for entropy
m is the mass and Cp is the specific heat of R134a. We can considerer these values as constants so the expression for entropy would be:
Solving the integral we get the expression to estimate the entropy change in the system

The mass is 5.25 Kg and Cp for R134a vapor can be consulted in tables, this value is 
We can get the temperature at the beginning knowing that is saturated vapor at 500 KPa. Consulting the thermodynamic tables, we get that temperature of saturation at this pressure is: 288.86 K
The temperature in the final state we can get it from the heat expression, since we know how much heat was lost in the process (-976.71 kJ). By convention when heat is released by the system a negative sign is used to express it.

With
clearing for T2 we get:

Now we can estimate the entropy change in the system

The entropy change in the system is negative because we are going from a state with a lot of disorder (high temperature) to one more organize (less temperature. This was done increasing the entropy of the surroundings.
b) see picture.
Answer:
yes for sure
Explanation:
iran oy has 3000 ballistic missiles but america has thousands of nukes. we can easily outnumber their forces as well. this will be a easy victory for us but will result in massive casualties on both sides
By applying the concepts of differential and derivative, the differential for y = (1/x) · sin 2x and evaluated at x = π and dx = 0.25 is equal to 1/2π.
<h3>How to determine the differential of a one-variable function</h3>
Differentials represent the <em>instantaneous</em> change of a variable. As the given function has only one variable, the differential can be found by using <em>ordinary</em> derivatives. It follows:
dy = y'(x) · dx (1)
If we know that y = (1/x) · sin 2x, x = π and dx = 0.25, then the differential to be evaluated is:





By applying the concepts of differential and derivative, the differential for y = (1/x) · sin 2x and evaluated at x = π and dx = 0.25 is equal to 1/2π.
To learn more on differentials: brainly.com/question/24062595
#SPJ1
Answer:
c
Explanation:
if someone is wrong that they can help with