1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Studentka2010 [4]
3 years ago
13

Air enters a compressor operating at steady state with pressure of 90 kPa, at a temperature of 350 K, and a volumetric flow rate

of 0.6 m3/s. The air exits the compressor at a pressure of 700 kPa. Heat transfer from the compressor to its surrounding occurs at a rate of 30 kJ/kg of air flowing. The compressor power input is 75 kW. Neglecting kinetic and potential energy effects and assuming air to be an ideal gas, find the exit temperature of air.
Engineering
1 answer:
natita [175]3 years ago
5 0

Answer:

T_{out} = 457.921\,K

Explanation:

Before determining the exit temperature of air, it is required to find the specific enthalpy at outlet by using the First Law of Thermodynamics:

-\dot Q_{out} + \dot W_{un} + \dot m \cdot (h_{in}-h_{out})=0

h_{out} = \frac{\dot W_{in}}{\dot m}- q_{out} +h_{in}

An ideal gas observes the following mathematical model:

P\cdot V = n\cdot R_{u}\cdot T

Where:

P - Absolute pressure, in kilopascals.

V - Volume, in cubic meters.

n - Quantity of moles, in kilomole.

R_{u} - Ideal gas universal constant, in \frac{kPa\cdot m^{3}}{kmole\cdot K}.

T - Absolute temperature, in kelvin.

The previous equation is re-arranged in order to calculate specific volume at inlet:

P\cdot V = \frac{m}{M}\cdot R_{u}\cdot T

\nu = \frac{R_{u}\cdot T}{P\cdot M}

\nu_{in} = \frac{(8.314\,\frac{kPa\cdot m^{3}}{kmol\cdot K} )\cdot (350\,K)}{(90\,kPa)\cdot (28.97\,\frac{kg}{kmol} )}

\nu_{in} = 1.116\,\frac{m^{3}}{kg}

The mass flow is:

\dot m = \frac{\dot V}{\nu_{in}}

\dot m = \frac{0.6\,\frac{m^{3}}{s} }{1.116\,\frac{m^{3}}{kg} }

\dot m = 0.538\,\frac{kg}{s}

The specific enthalpy in ideal gases depends on temperature exclusively. Then:

h_{in} = 350.49\,\frac{kJ}{kg}

The specific enthalpy at outlet is:

h_{out} = \frac{75\,kW}{0.538\,\frac{kg}{s} }-30\,\frac{kJ}{kg} + 350.49\,\frac{kJ}{kg}

h_{out} = 459.895\,\frac{kJ}{kg}

The exit temperature of air is:

T_{out} = 457.921\,K

You might be interested in
Only answer this if your name is riley
Sati [7]

Answer:

hey im like kinda riley

Explanation:

y u wanna talk to moi

3 0
2 years ago
Read 2 more answers
If you are unsure about holding a piece of wood to be drilled, then you should always use a
alisha [4.7K]
C I took construction class
4 0
3 years ago
I don’t get this it’s hella hard
qwelly [4]

Answer:

V₂ = 20 V

Vt = 20 V

V₁ = 20 V

V₃ = 20 V

I₁ = 10 mA

I₃ = 3.33 mA

It = 18.33 mA

Rt = 1090.91 Ω

Pt = 0.367 W

P₁ = 0.2 W

P₂ = 0.1 W

P₃ = 0.067 W

Explanation:

Part of the picture is cut off.  I assume there is a voltage source Vt there?

First, use Ohm's law to find V₂.

V = IR

V₂ = (0.005 A) (4000 Ω)

V₂ = 20 V

R₁ and R₃ are in parallel with R₂ and the voltage source Vt.  That means V₁ = V₂ = V₃ = Vt.

V₁ = 20 V

V₃ = 20 V

Vt = 20 V

Now we can use Ohm's law again to find I₁ and I₃.

V = IR

I = V/R

I₁ = (20 V) / (2000 Ω)

I₁ = 0.01 A = 10 mA

I₃ = (20 V) / (6000 Ω)

I₃ = 0.00333 A = 3.33 mA

The current It passing through Vt is the sum of the currents in each branch.

It = I₁ + I₂ + I₃

It = 10 mA + 5 mA + 3.33 mA

It = 18.33 mA

The total resistance is the resistance of the parallel resistors:

1/Rt = 1/R₁ + 1/R₂ + 1/R₃

1/Rt = 1/2000 + 1/4000 + 1/6000

Rt = 1090.91 Ω

Finally, the power is simply each voltage times the corresponding current.

P = IV

Pt = (0.01833 A) (20 V)

Pt = 0.367 W

P₁ = (0.010 A) (20 V)

P₁ = 0.2 W

P₂ = (0.005 A) (20 V)

P₂ = 0.1 W

P₃ = (0.00333 A) (20 V)

P₃ = 0.067 W

7 0
2 years ago
A tensile specimen with a 12mm initial diameter and 50mm gage length reaches maximum load at 90KN and fractures at 70KN
Aleksandr-060686 [28]

Answer:

i) 796.18 N/mm^2

ii) 1111.11 N/mm^2

Explanation:

Initial diameter ( D ) = 12 mm

Gage Length = 50 mm

maximum load ( P ) = 90 KN

Fractures at =  70 KN

minimum diameter at fracture = 10mm

<u>Calculate the engineering stress at Maximum load and the True fracture stress</u>

<em>i) Engineering stress at maximum load = P/ A </em>

= P / \pi  \frac{D^2}{4}  = 90 * 10^3 / ( 3.14 * 12^2 ) / 4

= 90,000 / 113.04 = 796.18 N/mm^2

<em>ii) True Fracture stress =  P/A </em>

= 90 * 10^3 / ( 3.24 * 10^2) / 4

= 90000 / 81  =  1111.11 N/mm^2

3 0
2 years ago
How many types of engineers are there
Fiesta28 [93]
Could be more than 10 but

Biomedical engineer
Electrical engineer
Chemical engineer
Mechanical engineer
Computer engineer
Aerospace engineer
Civil engineer
Petroleum engineer
Environmental engineer
Marine engineer

Are just some
6 0
2 years ago
Read 2 more answers
Other questions:
  • Is the ASUS ROG Strix B450-F Gaming amd ryzen 5 3600 ready?
    7·2 answers
  • A pitfall cited in Section 1.10 is expecting to improve the overall performance of a computer by improving only one aspect of th
    6·1 answer
  • What does this work for
    6·1 answer
  • A consolidation test was performed on a sample of fine-grained soil sample taken from a depth such that the vertical effective s
    14·1 answer
  • A controller on an electronic arcade game consists of a variable resistor connected across the plates of a 0.227 μF capacitor. T
    6·1 answer
  • A frying pan is connected to a 150-volt circuit. If the resistance of the frying pan is 25 ohms, how many amperes does the fryin
    12·1 answer
  • QUESTION:
    15·1 answer
  • Resistance depends on which three properties of a wire?
    15·1 answer
  • 3. A steel pipe of outside diameter 20 mm and thickness 3 mm is
    14·1 answer
  • The actual tracking weight of a stereo cartridge that is set to track at 3 g on a particular changer can be regarded as a contin
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!