Correct Answer: Option a. 6150.64 N
Weight (w) is defined as:
w = mg
So, first we need to find the mass (m) of the steel block using its volume and density.
Mass = Density x Volume
So,
m = 0.08 x 7840 = 627.2 g
Using value of m and g = 9.807, we get
w = 627.2 x 9.807 = 6150.95 Newtons
Therefore, option a is the correct answer.
The slight difference is because the value of g is rounded of to 3 decimal cases.
The total energy includes sensible heat to raise the temperature from 75.1°C to the boiling point. It also includes the latent heat to convert the liquid to gas. Then, it also includes sensible heat from he boiling point to 115.1°C. The equation is:
Energy = nCp,liquid(T,bp - T₁) + nΔH + nCp,gas(T₂ - T,bp)
where
n is the number of moles
T,bp is the boiling point of benzene at 80.1°C
Cp,liquid = 134.8 J/mol·°C
Cp,gas = 82.44 J/mol·°C
ΔH = 87.1 J/mol
Energy = (3.12 moles)(134.8 J/mol·°C)(80.1°C - 75.1°C) + (3.12 moles)(87.1 J/mol) + (3.12 moles)(82.44 J/mol·°C)(115.1°C - 80.1°C)
Energy = 11,377.08 J
Answer:
A. Up
B. Out
C. Out
D. To equilibrum
Explanation:
a. The reaction in an exothermic reaction so this means heat is given off. If the cylinder is thin enough heat will transfer to the water bath
b. Since the products will create heat which will increase pressure, the piston in an attempt to maintaining a constant pressure will move up to accommodate building pressure.
c. Heat will flow out of the gaseous mixture as this reaction creates heat as a product as well
d. Heat will flow out in the capacity to create an equilibrium with the water bath that it is in.