Answer: C. Atoms cannot be subdivided, created, or destroyed. This is the correct answer
Answer: 625 kj/mol
Explanation:
As shown below this expression gives the activation energy of the reverse reaction:
EA reverse reaction = EA forward reaction + | enthalpy change |
1) The activation energy, EA is the difference between the potential energies of the reactants and the transition state:
EA = energy of the transition state - energy of the reactants.
2) The activation energy of the forward reaction given is:
EA = energy of the transition state - energy of [ NO2(g) + CO(g) ] = 75 kj/mol
3) The negative enthalpy change - 250 kj / mol for the forward reaction means that the products are below in the potential energy diagram, and that the potential energy of the products, [NO(g) + CO2(g) ] is equal to 375 kj / mol - 250 kj / mol = 125 kj/mol
4) For the reverse reaction the reactants are [NO(g) + CO2(g)], and the transition state is the same than that for the forward reaction.
5) The difference of energy between the transition state and the potential energy of [NO(g) + CO2(g) ] will be the absolute value of the change of enthalpy plus the activation energy for the forward reaction:
EA reverse reaction = EA forward reaction + | enthalpy change |
EA reverse reaction = 375 kj / mol + |-250 kj/mol | = 375 kj/mol + 250 kj/mol = 625 kj/mol.
And that is the answer, 625 kj/mol
Answer:
1.20x10⁻²⁰μL
Explanation:
1cm³ is equal to 1milliliter. As we must know, 1milliliter = 1000 microliters, 1000μL. To convert the 1.20x10⁻²³mL we need to use the conversion factor: 1mL = 1000μL.
The volume of tantalum in μL is:
1.20x10⁻²³mL * (1000μL /1L) = 1.20x10⁻²⁰μL
Conduction, transfer of heat or electricity through a substance, resulting from a difference in temperature between different parts of the substance, in the case of heat, or from a difference in electric potential, in the case of electricity. Since heat is energy associated with the motions of the particles making up the substance, it is transferred by such motions, shifting from regions of higher temperature, where the particles are more energetic, to regions of lower temperature. The rate of heat flow between two regions is proportional to the temperature difference between them and the heat conductivity of the substance. In solids, the molecules themselves are bound and contribute to conduction of heat mainly by vibrating against neighboring molecules; a more important mechanism, however, is the migration of energetic free electrons through the solid. Metals, which have a high free-electron density, are good conductors of heat, while nonmetals, such as wood or glass, have few free electrons and do not conduct as well. Especially poor conductors, such as asbestos, have been used as insulators to impede heat flow (see insulation). Liquids and gases have their molecules farther apart and are generally poor conductors of heat. Conduction of electricity consists of the flow of charges as a result of an electromotive force, or potential difference. The rate of flow, i.e., the electric current, is proportional to the potential difference and to the electrical conductivity of the substance, which in turn depends on the nature of the substance, its cross-sectional area, and its temperature. In solids, electric current consists of a flow of electrons; as in the case of heat conduction, metals are better conductors of electricity because of their greater free-electron density, while nonmetals, such as rubber, are poor conductors and may be used as electrical insulators, or dielectrics. Increasing the cross-sectional area of a given conductor will increase the current because more electrons will be available for conduction. Increasing the temperature will inhibit conduction in a metal because the increased thermal motions of the electrons will tend to interfere with their regular flow in an electric current; in a nonmetal, however, an increase in temperature improves conduction because it frees more electrons.
Answer:
about 0.9 mol
Explanation:
there are 22.990 g/mol of Na
20.7/22.99 = 0.900391 mol
about 0.9 mol