I don't understand what you are looking for. I can tell you that the speed of molecules does change during state changing.
Answer:
A) yes
Explanation:
First section of trip: 30 miles in 40 minutes
Second section of trip: 15 miles in 20 minutes
The formula for speed is distance over time 
Calculate the speeds for each section of the trip.
First:
k = d/t
k = 30miles/40minutes <= reduce fraction by 10 (30÷10 and 40÷10)
k = 3 miles / 4 minutes
Second:
k = d/t
k = 15miles/20minutes <= reduce fraction by 5 (15÷5 and 20÷5)
k = 3 miles / 4 minutes
Therefore there is a constant speed because both sections of the trip are driving at "3 miles / 4 minutes".
3 miles / 4 minutes can be also formatted as:
0.75 miles per minute.
Answer:
E = k*Q₁/R₁² V/m
V = k*Q₁/R₁ Volt
Explanation:
Given:
- Charge distributed on the sphere is Q₁
- The radius of sphere is R₁
- The electric potential at infinity is 0
Find:
What is the electric field at the surface of the sphere?E.
What is the electric potential at the surface of the sphere?V
Solution:
- The 3 dimensional space around a charge(source) in which its effects is felt is known in the electric field.
- The strength at any point inside the electric field is defined by the force experienced by a unit positive charge placed at that point.
- If a unit positive charge is placed at the surface it experiences a force according to the Coulomb law is given by
F = k*Q₁/R₁²
- Then the electric field at that point is
E = F/1
E = k*Q₁/R₁² V/m
- The electric potential at a point is defined as the amount of work done in moving a unit positive charge from infinity to that point against electric forces.
- Thus, the electric potential at the surface of the sphere of radius R₁ and charge distribution Q₁ is given by the relation
V = k*Q₁/R₁ Volt
Answer:
H-a seated high school student
Explanation:
"Inertia" is an important word in Physics. It is the resistance of an object to any change in motion. Measuring the amount of inertia largely relies on the "mass of an object." The heavier the object, the more likely it is able to resist any change in motion.
Among the choices above, the high school student is the heaviest and has greater mass than the leaf, softball or balloon. This means, <u>it has the greatest inertia.</u>
Thus, this explains the answer.