Three resonance structures can be drawn for the allyl cation while two resonance structures can be drawn for the amidate ion.
Sometimes, we cannot fully describe the bonding in a chemical specie using a single chemical structure. In such cases, we have to use a number of structures which cooperatively represent the actual bonding in the molecule. These structures are called resonance or canonical structures.
The resonance structures of the allyl cation and the amidate ion are shown in the images attached to this answer. These structures show the different bonding extremes in these organic ions.
Learn more: brainly.com/question/4933048
Answer: The standard free energy change for a reaction in an electrolytic cell is always positive.
Explanation:
Electrolytic cells use electric currents to drive a non-spontaneous reaction forward.
Relation of standard free energy change and emf of cell

where,
= standard free energy change
n= no of electrons gained or lost
F= faraday's constant
= standard emf
= standard emf = -ve , for non spontaneous reaction
Thus 
Thus standard free energy change for a reaction in an electrolytic cell is always positive.
Answer:
Group 2A — The Alkaline Earth Metals. Group 2A (or IIA) of the periodic table are the alkaline earth metals: beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra).
Explanation:
Electronegativity is a measure of an atom's ability to attract shared electrons to itself. On the periodic table, electronegativity generally increases as you move from left to right across a period and decreases as you move down a group.
Answer:
The material that would most likely slow the flow of electricity is plastic.
Explanation:
Plastic is a conductor. A conductor is something that stop or slows down the flow of electricity.