Answer: A. Exothermic reaction
Explanation: Enthalpy change for a reaction is sum of enthalpy of formation of products minus sum of enthalpy of formation of reactants.
When the energy level of reactants is above as compared to the products, the reaction is exothermic and when its opposite then reaction is endothermic.
From given information, the potential energy diagram starts at 380 kJ means the energy level of reactants is 380 kJ. It ends at 100 kJ means the energy of products is 100 kJ.
Enthalpy of reaction = 100 kJ - 380 kJ
Enthalpy of reaction = -280 kJ
Negative sign of enthalpy change indicates an Exothermic reaction.
Displcement reaction. metal added to solutions containing metal that is less reactive would have visible reaction while less reactive metal will have no visible reaction. Eg, if copper is added to Mgcl2 andZnCl2, there will be no visible reaction. If Mg is added to CuCl2, blue solution will fade to form colourless solution and a reddish brown ppt of Cu will be formed.
Answer: 15.0 moles of
are formed from 30.0 mol of 
Explanation:
The balanced chemical reaction is :
According to stoichiometry :
2 moles of
give = 1 mole of 
Thus 30.0 moles of
will give =
of 
Thus 15.0 moles of
are formed from 30.0 mol of 
At the anode, half-cell oxidation occurs in a voltaic cell.
<h3>Voltaic Cell Principle</h3>
A voltaic cell generates electricity due to the Gibbs free energy of spontaneous redox processes occurring inside the cell, which is the basis for the voltaic cell's operating principle.
Two half-cells plus a salt bridge make up the voltaic cell. An electrolyte-immersed metallic electrode is present on each side of the cell. These two half-cells are wired together to form a connection to a voltmeter.
<h3>Voltaic Cell Parts</h3>
- Copper makes comprises the cathode of a photovoltaic cell. This electrode serves as the cell's positive terminal, where reduction takes place.
- Anode: Zink metal makes up this electrode. It creates the cell's negative electrode, where oxidation takes place.
- Oxidation and reduction are divided into two discrete parts in two half-cells.
- Salt Bridge: It contains the electrolytes needed to finish the circuit in the voltaic cell.
- The flow of electrons between the electrodes occurs via the external circuit.
Learn more about Voltaic cells here:-
brainly.com/question/27908270
#SPJ4
Answer:
83.8%
Explanation:
The balanced reaction equation is;
2Al(s) + 3Cl2(g) → 2AlCl3(s)
Now we have to obtain the limiting reactant as the reactant that produces the least amount of AlCl3
Amount of Al = 3.11g/27 g/mol = 0.115 moles
If 2 moles of Al yields 2 moles of AlCl3
Then 0.115 moles of Al yields 0.115 moles of AlCl3
For Cl2
Amount of Cl2 = 5.32 g/71 g/mol= 0.075 moles
If 3 moles of Cl2 yields 2 moles of AlCl3
0.075 moles of Cl2 yields 0.075 * 2/3 = 0.05 moles of AlCl3
Hence Cl2 is the limiting reactant
Theoretical yield of AlCl3 = 0.05 moles of AlCl3 * 133g/mol = 6.65 g
%yield = actual yield /theoretical yield * 100
%yield = 5.57 g/6.65 g * 100
%yield = 83.8%