Newtons law of motion for every action there’s an equal and opposite reaction.
Answer:
the changes in waves
Explanation:
the moon has its own gravitational pull thus making waves and the rising tides
Answer:
1.28 m
Explanation:
As shown in the diagram attached,
According to the principle of moment,
For a body at equilibrium,
Sum of clockwise moment = sum of anticlockwise moment.
Taking moment about the pivot,
W₁(1.6)+W(0.133) = W₂(x)............... Equation 1
Where W₁ = Weight of the first child, Wₓ = Weight of the seesaw, W₂ = weight of the second child, x = distance of the second child from the pivot.
But,
W = mg
Where g = 9.8 m/s², m = mass of the body
Therefore,
W₁ = 26×9.8 = 254.8 N,
Wₓ = 18×9.8 = 176.4 N
W₂ = 34.4×9.8 = 337.12 N
Substitute these values into equation 1
(254.8×1.6)+(176.4×0.133) = 337.12(x)
407.68+23.4612 = 337.12x
337.12x = 431.1412
x = 431.1412/337.12
x = 1.2789
x ≈ 1.28 m
Linear motion (also called rectilinear motion) is a motion along a straight line, and can therefore be described mathematically using only one spatial dimension.
True conditions
Efficiency of Heat Exchanger are as below:
the heat exchange process between two fluids with different temperatures using solid walls occurs in various engineering applications. The tool to achieve this exchange is a heat exchanger. Some applications like air conditioning, power generation, waste heat recovery, and chemical processing use this device.
The basis of the work of a heat exchanger is that the hot fluid enters the heat exchanger at temperature T1 and its heat capacity is Chot. Also, the cold fluid with the heat capacity of Ccold enters temperature t1; in the meantime, the hot fluid loses its heat, and its temperature drops to T2. It delivers heat to the cold fluid to increase its temperature to t2 and leave the heat exchanger at this temperature.
To learn more about Heat Exchanger
brainly.com/question/22595817
#SPJ4