Describes the displace, velo, and accel of an object
Answer:

Explanation:
First of all, we need to find the initial wavelength of the photon.
We know that its energy is

So its wavelength is given by:

The formula for the Compton scattering is:

where
is the original wavelength
h is the Planck constant
m is the electron mass
c is the speed of light
is the angle of the scattered photon
Substituting, we find

Answer:
0.832 m/s
Explanation:
The work done by the spring W equals the kinetic energy of the object K
The work done by the spring W = 1/2k(x₀² - x₁²) where k = spring constant, x₀ = initial compression = 0.065 m and x₁ = final compression = 0.032 m
The kinetic energy of the object, K = 1/2mv² where m = mass of object and v = speed of object
Since W = K,
1/2k(x₀² - x₁²) = 1/2mv²
k(x₀² - x₁²) = mv²
mv² = k(x₀² - x₁²)
v² = [(k/m)(x₀² - x₁²)]
taking square root of both sides, we have
v = √[(k/m)(x₀² - x₁²)] since ω = angular frequency = √(k/m),
v = √[(k/m)√(x₀² - x₁²)]
v = ω√(x₀² - x₁²)]
Since ω = 14.7 rad/s, we substitute the other variables into the equation, so we have
v = 14.7 rad/s × √((0.065 m)² - (0.032 m)²)]
v = 14.7 rad/s × √(0.004225 m² - 0.001024 m²)]
v = 14.7 rad/s × √(0.003201 m²)
v = 14.7 rad/s × 0.056577
v = 0.832 m/s
Answer:
0.2 m/s^2
Explanation:
initial speed 14m/s
final speed 20m/s
acceleration:
(20m/s - 14m /s) /30s = (6m/s)/30s = 0.2 m/s^2