Answer:
Part a)

Part b)

Explanation:
As we know that magnetic flux through the loop is given as

now we have

now rate of change in flux is given as

now we know that



Now plug in all data


Part b)
Now the radius of the loop after t = 1 s



Now plug in data in above equation


Answer:
359 g Mn
General Formulas and Concepts:
- Dimensional Analysis
- Reading the Periodic Table of Elements
Explanation:
<u>Step 1: Define</u>
6.53 mol Mn
<u>Step 2: Find conversion</u>
1 mol Mn = 54.94 g Mn
<u>Step 3: Dimensional Analysis</u>
<u />
= 358.758 g Mn
<u>Step 4: Simplify</u>
<em>We are given 3 sig figs.</em>
358.758 g Mn ≈ 359 g Mn
I think the answer to this is chemical