To solve this problem it is necessary to apply the concepts related to Malus' law. Malus' law indicates that the intensity of a linearly polarized ray of light that passes through a perfect analyzer with a vertical optical axis is equivalent to:

Indicates the intensity of the light before passing through the Polarizer,
I = The resulting intensity, and
= Indicates the angle between the axis of the analyzer and the polarization axis of the incident light.
There is 3 polarizer, then
For the exit of the first polarizer we have that the intensity is,

For the third polarizer then we have,

Replacing with the first equation,



Therefore the transmitted intensity now is
of the initial intensity.
use the formula
v= u+ at
v is final velocity , u is initial velocity , a is acceleration and t is time
put the values
20 = 0+ a×5
a = 4 m/s²
Temperature and rate of evaporation are proportional to each other. Surface area: As the surface area increases, the rate of evaporation increases. The surface area and rate of evaporation are proportional to each other. Humidity: The rate of evaporation decreases with an increase in humidity.
I think it would'nt move at all but im not postive
Answer:371.564 mi
Explanation:
Given
Airplane flies northwest for 250 mi and then travels west 150 mi
That is first it travels 250cos45 in - ve x direction and simultaneously 250sin45 in y direction
after that it travels 150 mi in -ve x direction
So its position vector is given by


so magnitude of displacement is

|r|=371.564 mi