Answer:
Near the boiling point of the solvent
Explanation:
The process of recrystallization is hinged on the fact that the amount of solute that can be dissolved by a solvent increases with temperature. The process involves creation of a solution by dissolving a solute in a solvent at or near its boiling point. At the boiling point of the solvent, the solute has a greater solubility in the solvent; not much volume of the hot solvent is required to dissolve the solute.
Before the solution is later cooled, you can now filter out insoluble impurities from the hot solvent. The quantity of the original solute drops appreciably because impurities have been removed. At this lower temperature, the solution becomes saturated and the solute can no longer be held in solution hence it forms pure crystals of solute, which can be recovered.
Recrystallization must be carried out using the proper solvent. The solute must be relatively insoluble in the solvent at room temperature but more soluble in the solvent at elevated temperature.
Answer:
jesus
Explanation:
jesus is always the answer
Answer:
4.52×10^24
Explanation:
N = n × Na
where; N = no. of bananas
n = no. of moles
Na = Avogadro's constant
Which is 6.02×10^23
N = 7.5 × 6.02×10^23
N =4.515×10^24
Answer:
2 Fe(iii)2O3 + 3 C ==> 2 Fe + 3 CO2
Explanation:
First of all, you have to translate the words into an equation.
Fe(iii)2O3 + C ==> Fe + CO2
The easiest way to tackle this is to start with the Oxygens and balance them. They must balance by going to the greatest common factor which is 6. So you multiply the molecule by whatever it takes to get the Oxygens to 6
2 Fe(iii)2O3 + C ==> Fe + 3 CO2
Now work on the irons. There 2 on the left and just 1 on the right. So you need to multiply the iron by 2.
2 Fe(iii)2O3 + C ==> 2 Fe + 3 CO2
Finally it is the turn of the carbons. There are 3 on the right, so you must make the carbon on the left = 3
2 Fe(iii)2O3 + 3 C ==> 2 Fe + 3 CO2
And you are done.