<span>26.833 liters
Aluminum oxide has a formula of Al</span>₂O₃,<span> which means for every mole of aluminum used, 1.5 moles of oxygen is required (3/2 = 1.5).
Given 42.5 g of aluminum divided by its atomic mass (26.9815385) gives 1.575 moles of aluminum.
Since it takes 1.5 moles of oxygen per mole of aluminum to make aluminum oxide, you'll need 2.363 moles of oxygen atoms.
Each molecule of oxygen gas has 2 oxygen atoms, so the moles of oxygen gas will be 2.363/2 = 1.1815
Finally, you need to calculate the volume of </span>1.1815 <span>moles of oxygen gas.
1 mole of gas at STP occupies 22.7 liters of volume. Therefore,
1.1815 * 22.7 = </span>26.8 liters <span>of oxygen gas.
</span>
The answer is letter C.
Because we classify something as a star when it is: a large ball of gas that undergoes nuclear fusion. Given this definition, a comet is not a star. A comet is a ball of ice and dirt hurtling through space, it shines only because it reflects ligh
Carbon dioxide and oxygen
Uranium-235 would be more useful for dating in Cambrian time because Cambrian time was 540 million years ago while the half life of carbon-14 is only 5,730 years
Hope this helps
Mols CuSO4 = M x L = 1.50 x 0.150 = 0.225
<span>mols KOH = 3.00 x 0.150 = 0.450 </span>
<span>specific heat solns = specific heat H2O = 4.18 J/K*C </span>
<span>CuSO4 + 2KOH = Cu(OH)2 + 2H2O </span>
<span>q = mass solutions x specific heat solns x (Tfinal-Tinitial) + Ccal*deltat T </span>
<span>q = 300g x 4.18 x (31.3-25.2) + 24.2*(31.3-25.2) </span>
<span>dHrxn in J/mol= q/0.225 mol CuSO4 </span>
<span>Then convert to kJ/mol
</span>