Answer:
3.605551275463989
Explanation:
solve using Pythagorean theorem
Answer:

Explanation:
The equation for centripetal acceleration is
.
We know the wheel turns at 45 rpm, which means 0.75 revolutions per second (dividing by 60), so our frequency is f=0.75Hz, which is the inverse of the period T.
Our velocity is the relation between the distance traveled and the time taken, so is the relation between the circumference
and the period T, then we have:

Putting all together:

Answer:
As we need to use a nested loop in our function,hence push $ra
pop $ra
jal nested_function_label
nop is the correct option.
Answer:
Vi = 5 m/s
Explanation:
let (a) acceleration = 0.75 m/s²
(t) time = 20 seconds
Vf = final velocity = 72 km/hr (convert to m/s to units consistency = 20 m/s)
find Initial velocity (Vi)
Vf - Vi
a = -----------
t
Vi = Vf - (a * t) = 20 - (0.75 * 20)
Vi = 5 m/s
Answer:
<em>The force of kinetic friction between Kiera and the floor is 9.24 N</em>
Explanation:
<u>Friction Force</u>
When an object is moving and encounters friction in rough surfaces, it loses acceleration and/or velocity because the friction force opposes motion.
The friction force when an object is moving on a horizontal surface is calculated by:

Where μ is the coefficient of static or kinetics friction and N is the normal force.
If no forces other then the weight and the normal are acting upon the y-direction, then the weight and the normal are equal in magnitude:
N = W
Thus, the friction force is:

Kiera, the W=330 N girl steps in water that has a coefficient of friction of μ=0.028 with the floor.
The kinetic friction force is:
Fr = 0.028*330
Fr = 9.24 N
The force of kinetic friction between Kiera and the floor is 9.24 N