The rms speed can be calculated using the following rule:
rms = sqrt ((3RT) / (M)) where:
R is the gas constant = 8.314 J/mol-K
T is the temperature = 31.5 + 273 = 304.5 degrees kelvin
M is the molar mass = 2*14 = 28 grams = 0.028 kg
Substitute with the givens to get the rms speed as follows:
rms speed = sqrt [(3*8.314*304.5) / (0.028)] = 520.811 m/sec
Answer: the conclusion is that
Explanation:
Work done = 0.5*m*[(v2)^2 - (v1)^2]
where m is mass,
v2 and v1 are the velocities.
Given that m = 1.50 x 10^3 kg, v2 = -15 m/s (decelerates), v1 = 25 kg,
Work done = 0.5 * 1.50 x 10^3 * ((-15)^2 - 25^2) = 3 x 10^5 joules
Just ignore the negative value for the final result because work is a scalar quantity.
Answer:
The child represented by a star on the outside path.
Explanation: