Answer:
Water (H₂O) and Carbon dioxide (CO₂)
Explanation:
Photosynthesis usually refers to the process by which the green plants can synthesize their own food in the presence of sunlight, water, carbon dioxide, and light. This process helps in the conversion of light energy into chemical energy.
In addition to the sunlight and chlorophyll, the process of photosynthesis requires water as well as carbon dioxide. The plants are comprised of green pigments on their leaves that are commonly known as chlorophyll. These pigments absorb the water molecules and carbon dioxide gas that helps in synthesizing their food.
The equation for the process of photosynthesis is given below:
6CO₂ + 6H₂0 + (energy) → C₆H₁₂O₆ + 6O₂
-- We know that the y-component of acceleration is the derivative of the
y-component of velocity.
-- We know that the y-component of velocity is the derivative of the
y-component of position.
-- We're given the y-component of position as a function of time.
So, finding the velocity and acceleration is simply a matter of differentiating
the position function ... twice.
Now, the position function may look big and ugly in the picture. But with the
exception of 't' , everything else in the formula is constants, so we don't even
need any fancy processes of differentiation. The toughest part of this is going
to be trying to write it out, given the text-formatting capabilities of the wonderful
envelope-pushing website we're working on here.
From the picture . . . . . y (t) = (1/2) (a₀ - g) t² - (a₀ / 30t₀⁴ ) t⁶
First derivative . . . y' (t) = (a₀ - g) t - 6 (a₀ / 30t₀⁴ ) t⁵ = (a₀ - g) t - (a₀ / 5t₀⁴ ) t⁵
There's your velocity . . . /\ .
Second derivative . . . y'' (t) = (a₀ - g) - 5 (a₀ / 5t₀⁴ ) t⁴ = (a₀ - g) - (a₀ /t₀⁴ ) t⁴
and there's your acceleration . . . /\ .
That's the one you're supposed to graph.
a₀ is the acceleration due to the model rocket engine thrust
combined with the mass of the model rocket
'g' is the acceleration of gravity ... 9.8 m/s² or 32.2 ft/sec²
t₀ is how long the model rocket engine burns
Pick, or look up, some reasonable figures for a₀ and t₀
and you're in business.
The big name in model rocketry is Estes. Their website will give you
all the real numbers for thrust and burn-time of their engines, if you
want to follow it that far.
Answer:
After the colision, the stationary electron's momentum is given as:
P = 2.7328 x 10^(-25) kg m/s
The direction of momentum is the same as the direction of velocity of the electron.
Explanation:
In an Isolated system, when an object moving at some velocity v collides head on with a stationary object of equal mass. There velocities are exchanged.
This means that the first electron will become stationary and the electron which was stationary initially will start moving at a velocity of 3*10^(5)m/s in the same direction as the first electron.
Post collision momentum of the stationary electron:
V = 3 x 10^5 m/s
m = 9.1093 x 10^(-31) kg
Momentum = P = mV = 9.1093 x 10^(-31) x 3 x 10^5
P = 2.7328 x 10^(-25) kg m/s
The direction of momentum is the same as the velocity of the electron.
The answer for this question would be Planetary Nebula.
Black holes are created when the star core has a mass of more than 2.5 times of the Sun. In Supernova, fo<span>r stars with mass of more than 8 times the mass of the Sun, death is signalled by a gigantic explosion: during the first second it can be as bright as a whole galaxy with hundreds of billions of stars. In Red Giants, it is </span>due to explosion of average stars like the Sun. Lastly, in Planetary Nebula, f<span>or small stars (that is less than 8 times the mass of the Sun), at the end of the Red Giant phase, the star can’t contract enough to generate the temperatures needed for further nuclear fusion.</span>
When 'The big bang' happened lots of large pieces of molten rock was flying around the solar system. As the rocks crashed together they got bigger and as the got bigger they attracted more rocks. Some scientists think that a large piece of molten rock hit the still developing Earth and created the Moon. This impact also caused the Earths angled spin. The Moon got trapped in Earth's orbit and has stayed ever since. Small astroids have hit the Moon causing craters. The Earth doesn't get hit as much because of our thicker atmosphere. Hope this helps!