Answer:
By repelling water, the tiny water striders stand on the water's surface and the captured airs allows them to float and move easily. so number 2. Surface Tension.
Explanation:
The attraction between water molecules creates tension and a very delicate membrane. Water striders walk on this membrane. ... The legs have tiny hairs that repel water and capture air.
The potential energy by the magnetic field can turn into kinetic energy once the field is moving from the S pole to the N pole when it reaches the N pole it is potential energy when it exits the S pole it is kinetic energy.
Answer:
7.5 g
Explanation:
There is some info missing. I think this is the original question.
<em>Ammonium phosphate ((NH₄)₃PO₄) is an important ingredient in many fertilizers. It can be made by reacting phosphoric acid (H₃PO₄) with ammonia (NH₃). What mass of ammonium phosphate is produced by the reaction of 4.9 g of phosphoric acid? Be sure your answer has the correct number of significant digits.</em>
<em />
Step 1: Write the balanced equation
H₃PO₄ + 3 NH₃ ⇒ (NH₄)₃PO₄
Step 2: Calculate the moles corresponding to 4.9 g of phosphoric acid
The molar mass of phosphoric acid is 98.00 g/mol.
![4.9 g \times \frac{1mol}{98.00g} = 0.050mol](https://tex.z-dn.net/?f=4.9%20g%20%5Ctimes%20%5Cfrac%7B1mol%7D%7B98.00g%7D%20%3D%200.050mol)
Step 3: Calculate the moles of ammonium phosphate produced from 0.050 moles of phosphoric acid
The molar ratio of H₃PO₄ to (NH₄)₃PO₄ is 1:1. The moles of (NH₄)₃PO₄ produced are 1/1 × 0.050 mol = 0.050 mol.
Step 4: Calculate the mass corresponding to 0.050 moles of ammonium phosphate
The molar mass of ammonium phosphate is 149.09 g/mol.
![0.050mol \times \frac{149.09 g}{mol} = 7.5 g](https://tex.z-dn.net/?f=0.050mol%20%5Ctimes%20%5Cfrac%7B149.09%20g%7D%7Bmol%7D%20%3D%207.5%20g)
Silver?
Fun FACT : An apple, potato, and onion all taste the same if you eat them with your nose plugged
Answer:
Inert gases
Explanation:
Inert elements have a stable electron configuration meaning their shells/orbitals are full with their requisite number of electrons. Therefore, gaining or losing an electron would take high ionization energy. Therefore they are less likely to be involved in chemical reaction unless a high amount of energy is used. An example of an inert gas is Helium.