Answer:
1.089%
Explanation:
From;
ν =1/2πc(k/meff)^1/2
Where;
ν = wave number
meff = reduced mass or effective mass
k = force constant
c= speed of light
Let
ν =1/2πc (k/meff)^1/2 vibrational wave number for 23Na35 Cl
ν' =1/2πc(k'/m'eff)^1/2 vibrational wave number for 23Na37 Cl
The between the two is obtained from;
ν' - ν /ν = (k'/m'eff)^1/2 - (k/meff)^1/2 / (k/meff)^1/2
Therefore;
ν' - ν /ν = [meff/m'eff]^1/2 - 1
Substituting values, we have;
ν' - ν /ν = [(22.9898 * 34.9688/22.9898 + 34.9688) * (22.9898 + 36.9651/22.9898 * 36.9651)]^1/2 -1
ν' - ν /ν = -0.01089
percentage difference in the fundamental vibrational wavenumbers of 23Na35Cl and 23Na37Cl;
ν' - ν /ν * 100
|(-0.01089)| × 100 = 1.089%
B. light reflects off of the t shirt and enters the human eye
Answer:
The relative strength of the four intermolecular forces is: Ionic > Hydrogen bonding > dipole dipole > Van der Waals dispersion forces. ...
Boiling points increase as the number of carbons is increased.
Branching decreases boiling point.
Explanation:
Answer:
47.2 g
Explanation:
Let's consider the following double displacement reaction.
3 FeCl₂ + 2 Na₃PO₄ → Fe₃(PO₄)₂ + 6 NaCl
The molar mass of Fe₃(PO₄)₂ is 357.48 g/mol. The moles corresponding to 44.3 g are:
44.3 g × (1 mol / 357.48 g) = 0.124 mol
The molar ratio of Fe₃(PO₄)₂ to FeCl₂ is 1:3. The moles of FeCl₂ are:
3 × 0.124 mol = 0.372 mol
The molar mass of FeCl₂ is 126.75 g/mol. The mass of FeCl₂ is:
0.372 mol × (126.75 g/mol) = 47.2 g