Based on a scene showing a physical change in a piston-cylinder assembly, the thermodynamic numbers indicated below are 760 torr 760.
<h3>What elements make up the first rule of thermodynamics?</h3>
The first law of thermodynamics states that the following equation describes how the change in internal energy relates to the heat exchanged by the system and the work performed on or by the system: U = Q + W, where Q represents the heat energy that the system exchanged.
<h3>What are the thermodynamic quantities' two components?</h3>
Extensive and intensive thermodynamic quantities are traditionally separated into these two categories. While intensive quantities are independent of system size, extensive quantities grow linearly with system size.
To know more about thermodynamic visit:-
brainly.com/question/1368306
#SPJ4
When nonmetal atoms with differing electronegativities react, they form molecules with polar covalent bonds. Each element has an electronegativity value, which is a measure of the ability of an atom to attract and share electron pairs of another atom. Are you looking for the electronegativity value? I think this is correct
THE DEFINITION OF PHYSICAL CHANGE: Physical changes are changes affecting the form of a chemical substance, but not its chemical composition. Physical changes are used to separate mixtures into their component compounds, but can not usually be used to separate compounds into chemical elements or simpler compounds. so the answer is that the form of the sugar is changing in water but if you boiled the water till its all evaporated all that will be left is the sugar
Answer:
5 and the rest are all set to the same date on your list as the other one to get you a list on for a your special first year week and with a special holiday party holiday
Explanation:
Sorry desperate for points
When the first reaction equation is:
AgI(S) ↔ Ag+(Aq) + I-(Aq)
So, the Ksp expression = [Ag+][I-]
∴Ksp = [Ag+][I-] = 8.3 x 10^-17
Then the second reaction equation is:
Ag+(aq) + 2NH3(aq) ↔ Ag(NH3)2+
So, Kf expression = [Ag(NH3)2+] / [Ag+] [NH3]^2
∴Kf = [Ag(NH3)2+] /[Ag+] [NH3]^2 = 1.7 x 10^7
by combining the two equations and solve for Ag+:
and by using ICE table:
AgI(aq) + 2NH3 ↔ Ag(NH3)2+ + I-
initial 2.5 0 0
change -2X +X +X
Equ (2.5-2X) X X
so K = [Ag(NH3)2+] [I-] / [NH3]^2
Kf * Ksp = X^2 / (2.5-2X)
8.3 x 10^-17 * 1.7 x10^7 = X^2 / (2.5-2X) by solving for X
∴ X = 5.9 x 10^-5
∴ the solubility of AgI = X = 5.9 x 10^-5 M