Answer:
please mark me as a brainleast and follow me please my soster
Answer:
A) a = 2.31[m/s^2]; B) t = 14.4 [s]
Explanation:
We can solve this problem using the kinematic equations, but firts we must identify the data:
Vf= final velocity = take off velocity = 120[km/h]
Vi= initial velocity = 0, because the plane starts to move from the rest.
dx= distance to run = 240 [m]
![v_{f} ^{2} =v_{i} ^{2}+2*g*dx\\where:\\v_{f}=120[\frac{km}{h} ]*\frac{1hr}{3600sg} * \frac{1000m}{1km} =33.33[m/s]\\\\Replacing\\33.33^{2}=0+2*a*(240)\\ a=\frac{11108.88}{2*240}\\ a=2.31[m/s^2]\\](https://tex.z-dn.net/?f=v_%7Bf%7D%20%5E%7B2%7D%20%3Dv_%7Bi%7D%20%5E%7B2%7D%2B2%2Ag%2Adx%5C%5Cwhere%3A%5C%5Cv_%7Bf%7D%3D120%5B%5Cfrac%7Bkm%7D%7Bh%7D%20%5D%2A%5Cfrac%7B1hr%7D%7B3600sg%7D%20%2A%20%5Cfrac%7B1000m%7D%7B1km%7D%20%3D33.33%5Bm%2Fs%5D%5C%5C%5C%5CReplacing%5C%5C33.33%5E%7B2%7D%3D0%2B2%2Aa%2A%28240%29%5C%5C%20a%3D%5Cfrac%7B11108.88%7D%7B2%2A240%7D%5C%5C%20%20a%3D2.31%5Bm%2Fs%5E2%5D%5C%5C)
To find the time we must use another kinematic equation.
![v_{f} =v_{i} +a*t\\replacing:\\33.33=0+(2.31*t)\\t=\frac{33.33}{2.31}\\ t=14.4[s]](https://tex.z-dn.net/?f=v_%7Bf%7D%20%3Dv_%7Bi%7D%20%2Ba%2At%5C%5Creplacing%3A%5C%5C33.33%3D0%2B%282.31%2At%29%5C%5Ct%3D%5Cfrac%7B33.33%7D%7B2.31%7D%5C%5C%20t%3D14.4%5Bs%5D)
As we know that range of the projectile motion is given by

here we know that range will be same for two different angles
so here we can say the two angle must be complementary angles
so the two angles must be

so it is given that one of the projection angle is 75 degree
so other angle for same range must be 90 - 75 = 15 degree
so other projection angle must be 15 degree
Yes,when they erupt witch leaves it unactive with makes it mountin
Answer:
Spiral galaxies consist of a flat, rotating disk of stars, gas and dust, and a central concentration of stars known as the bulge. These are surrounded by a much fainter halo of stars, many of which reside in globular clusters.
Elliptical galaxies have smooth, featureless light-profiles and range in shape from nearly spherical to highly flattened, and in size from hundreds of millions to over one trillion stars. In the outer regions, many stars are grouped into globular clusters. Most elliptical galaxies are composed of older, low-mass stars, with a sparse interstellar medium and minimal star formation activity They are often chaotic in appearance, with neither a nuclear bulge nor any trace of spiral arm structure. Collectively they are thought to make up about a quarter of all galaxies.
irregular galaxies were once spiral or elliptical galaxies but were deformed by gravitational action. they are shapeless.