For this reaction to proceed, the following bond breaking should occur:
*one C-H bond
* one Cl-Cl bond
After, the following bond formations should occur:
*one C-Cl bond
*one H-Cl bond
Now, add the bond energies for the respective bond energies which can be found in the attached picture. For bond formations, energy is negative. For bond breaking, energy is positive.
ΔHrxn = (1)(413) + (1)(242) + 1(-328) + 1(-431) =
<em>-104 kJ</em>
37Ca and 53Fe I believe ..
Answer:
Mrs. Nogaki is right because Mr. Holmes’s BBQ produces 3x more CO2 for each mole of fuel burned.
Explanation:
Now Mrs. Nogaki has already figured out the chemical combustion reaction behind the operation of her BBQ. It is pertinent to reproduce it here.
CH4(g) + 2O2(g)→CO2(g) +2H2O(g)
She already has this figured out but Mr. Holmes doesn't have any chemical reaction equation to back his claims. Let us help him with the correct combustion equation for propane.
C3H8(g) + 5O2(g) + 3CO2(g) + 4H2O(g)
We can clearly see from the reaction equation that Mr. Holmes BBQ produces three times more carbon IV oxide than Mr. Nogaki's BBQ so Mr. Nogaki was right in her claim after all.
Hence the answer!
Answer:
B
Explanation:
You add them all together if I'm correct. (I'm in middle school so don't get mad if its wrong lol)