1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Maksim231197 [3]
3 years ago
14

Beer, an alcoholic beverage, is a solution composed primarily of water with an ethanol content of about 7%. identify the solute

and the solvent in beer.
Physics
1 answer:
zloy xaker [14]3 years ago
3 0
Hi, thank you for posting your question here at Brainly.

A mixture primarily consists of the solute and the solvent. The solvent constitutes the majority of the amount in the mixture. Since ethanol account for 7%, then water must be 93%, considering other inert materials to be negligible.

Thus, the solute is ethanol and the solvent is water.
You might be interested in
The nucleus is found in the center of an atom options: True False
AfilCa [17]
It’s true all the way. It’s true
8 0
3 years ago
Read 2 more answers
Which statement describes the relationship between bond strength and the melting and boiling points of a substance? A. As the fo
icang [17]

Answer:

a

Explanation:

4 0
3 years ago
In this problem, you will practice applying this formula to several situations involving angular acceleration. In all of these s
riadik2000 [5.3K]

Answer:

Part a)

\alpha = \frac{2(m_1 - m_2)g}{(m_1 + m_2)L}

Part b)

\alpha = \frac{6(m1 - m_2)g}{3(m_1 + m_2)L + m_{bar}L}

Explanation:

As we know that the see saw bar is massless so here torque due to two masses is given as

\tau = I\alpha

here we will have

\tau = (m_1g - m_2g)(\frac{L}{2})

now we will have inertia of two masses given as

I = (m_1 + m_2)(\frac{L}{2})^2

now we have

I = (m_1 + m_2)\frac{L^2}{4}

now the angular acceleration is given as

\alpha = \frac{\tau}{I}

so we have

\alpha = \frac{2(m_1 - m_2)g}{(m_1 + m_2)L}

Part b)

Now if the rod is not massles then we will have total inertia given as

I = (m_1 + m_2)(\frac{L}{2})^2 + \frac{m_{bar}L^2}{12}

so we will have

I = (m_1 + m_2)\frac{L^2}{4} + \frac{m_{bar}L^2}{12}

now the acceleration is given as

\alpha = \frac{\tau}{I}

\alpha = \frac{6(m1 - m_2)g}{3(m_1 + m_2)L + m_{bar}L}

7 0
4 years ago
Classes are canceled due to snow, so you take advantage of the extra time to conduct some physics experiments. You fasten a larg
IRINA_888 [86]

Answer:

Time : <u>7.96 s</u>

Distance Traveled : <u>357.8 m</u>  

Explanation:

In order to solve this problem, we first consider the accelerated motion of rocket. We will be using the subscript 1 for accelerated motion.

So, for accelerated motion, we have:

Acceleration = a₁ = 14.5 m/s²

Time Period = t₁ = 3.1 s

Initial Velocity = Vi₁ = 0 m/s    (Since, it starts from rest)

Final Velocity = Vf₁

Distance covered by sled during acceleration motion = s₁

Now, using 1st equation of motion:

Vf₁ = Vi₁ + (a₁)(t₁)

Vf₁ = 0 m/s + (14.5 m/s²)(3.1 s)

Vf₁ = 44.95 m/s

Now, using 2nd equation of motion:

s₁ = (Vi₁)(t) + (0.5)(a₁)(t₁)

s₁ = (0 m/s)(3.1 s) + (0.5)(14.5 m/s²)(3.1 s)

s₁ = 22.5 m

Now, we first consider the decelerated motion of rocket. We will be using the subscript 2 for decelerated motion.

So, for accelerated motion, we have:

Deceleration = a₂ = - 5.65 m/s²

Time Period = t₂ = ?

Initial Velocity = Vi₂ = Vf₁ = 44.95 m/s    (Since, decelerate motion starts, where accelerated motion ends)

Final Velocity = Vf₂ = 0 m/s    (Since, rocket will eventually stop)

Distance covered by sled during deceleration motion = s₂

Now, using 1st equation of motion:

Vf₂ = Vi₂ + (a₂)(t₂)

0 m/s = 44.95 m/s + (- 5.65 m/s²)(t₂)

t₂ = (44.95 m/s)/(5.65 m/s²)

<u>t₂ = 7.96 s</u>

Now, using 2nd equation of motion:

s₂ = (Vi₂)(t₂) + (0.5)(a₂)(t₂)

s₂ = (44.95 m/s)(7.96 s) + (0.5)(- 5.65 m/s²)(7.96 s)

s₂ = 357.8 m - 22.5 m

s₂ = 335.3 m

Thus, the total distance covered by sled will be:

Total Dustance = S = s₁ + s₂

S = 22.5 m + 335.3 m

<u>S = 357.8 m</u>

7 0
3 years ago
Calculate the mass of an ice block of volume 12m³. the density of the ice is 920kg/m³.​
beks73 [17]

Mass = density • volume

so (12)(920)(kg/m^3•m^3)

11040 kg

4 0
3 years ago
Other questions:
  • Which of the following best describes what went wrong with the scientists’ study? an improper experimental procedure the lack of
    11·2 answers
  • A wave amplitude 0.36m interferes with a second wave of amplitude 0.22m traveling in the same direction. What is the largest res
    13·1 answer
  • Which direction do the particles of the medium move as compared to the energy in a transverse wave?
    12·1 answer
  • What kind of gas cloud is most likely to give birth to stars? what kind of gas cloud is most likely to give birth to stars? a co
    13·1 answer
  • From the illustration of the potassium atom, fill in the periodic table selection.
    14·1 answer
  • When we talk about how a Ferrari obtains a top speed of 349 km/h, are we referring to average speed or instantaneous? How do you
    7·2 answers
  • What is the ionisation energy of an atom
    15·2 answers
  • A
    15·1 answer
  • ⚠️I need help with the last question!⚠️
    11·1 answer
  • Which quantity must be the same for two bodies in thermal equilibrium?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!