<span>So we want to know which of the following is the best representation of converting potential energy into kinetic energy. The correct answer is C. A roller coaster rounds a curve to climb the next hill. So before he climbed the hill, the roller coaster had kinetic energy which he used to climb to the hill. Then the potential energy he has on the hill can again be transformed into kinetic energy when he will go down hill. </span>
Answer:
the answer is D
Explanation:
Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object.
Answer:
<em>The new force is 2/3 of the original force</em>
Explanation:
<u>Coulomb's Law
</u>
The electrical force between two charged objects is directly proportional to the product of their charges and inversely proportional to the square of the distance between the two objects.
Written as a formula:

Where:

q1, q2 = the objects' charge
d= The distance between the objects
Suppose the first charge is doubled (2q1) and the second charge is one-third of the original charge (q2/3). Now the force is:

Factoring out 2/3:

Substituting the original force:

The new force is 2/3 of the original force
To solve this exercise it is necessary to use the concepts related to Difference in Phase.
The Difference in phase is given by

Where
Horizontal distance between two points
Wavelength
From our values we have,


The horizontal distance between this two points would be given for

Therefore using the equation we have




Therefore the correct answer is C.