A futuristic design for a car is to have a large solid disk-shaped flywheel within the car storing kinetic energy. The uniform flywheel has mass 370 kg with a radius of 0.500 m and can rotate up to 320 rev/s. Assuming all of this stored kinetic energy could be transferred to the linear velocity of the 3500-kg car, find the maximum attainable speed of the car.
Answer:
A) 
B) F = 1632.65 N
Explanation:
Given details
outside air speed is given as 
since inside air is atmospheric , 
a) By using bernoulli equation between outside and inside of flight


![\Delta P = \frac{1}{2} \rho[ v_2^2 -v_1^2]](https://tex.z-dn.net/?f=%5CDelta%20P%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Crho%5B%20v_2%5E2%20-v_1%5E2%5D)
![\Delta P = \frac{1}{2} 1.29 [ 150^2 - 0^2]](https://tex.z-dn.net/?f=%5CDelta%20P%20%3D%20%5Cfrac%7B1%7D%7B2%7D%201.29%20%5B%20150%5E2%20-%200%5E2%5D)

b) force exerted on window
Area of window 
We know that force is given as


F = 1632.65 N
Answer: C
Explanation: On the top edge.