The answer your looking for is conduction.
The answer is C. Convection.
Radiation is the transfer of energy through electromagnetic waves. Conduction, on the other hand, is energy transfer through solid material. Condensation occurs when warm gas makes contact with a cold surface or environment, which causes a change in state from gas to liquid. These definitions rule out choices A, B, and D.
Convection is movement of particles in fluid or gas. As liquid/gas heats up, it becomes less dense and rises, moving away from the heat source. When it rises, it eventually cools down and sinks again. It is warmed up again and the cycle continues. This is why there is a circular motion when convection occurs.
The value of the force, F₀, at equilibrium is equal to the horizontal
component of the tension in string 2.
Response:
- The value of F₀ so that string 1 remains vertical is approximately <u>0.377·M·g</u>
<h3>How can the equilibrium of forces be used to find the value of F₀?</h3>
Given:
The weight of the rod = The sum of the vertical forces in the strings
Therefore;
M·g = T₂·cos(37°) + T₁
The weight of the rod is at the middle.
Taking moment about point (2) gives;
M·g × L = T₁ × 2·L
Therefore;

Which gives;


F₀ = T₂·sin(37°)
Which gives;

<u />
Learn more about equilibrium of forces here:
brainly.com/question/6995192
Answer:
Acceleration of the ship, 
Explanation:
It is given that,
Mass of both ships, 
Distance between two ships, d = 110 m
The gravitational force between two ships is given by :


F = 8.38 N
Let a is the acceleration. Now, using second law of motion as :



So, the acceleration of either ship due to the gravitational attraction of the other is
. Hence, this is the required solution.
The electric field is always perpendicular to the surface outside of a conductor. TRUE
<span> If an electron were placed on an electric field line, it would move in a direction perpendicular to the field. FALSE, it would move in an anti-parallel direction because its charge is negative </span>
<span>Electric field lines originate on positive charge and terminate on negative charge. TRUE ; but they can also go to infinity </span>
It is possible for two electric field lines to cross each other.
<span> Usually FALSE; though technically possible at special points where field is zero. </span>
If an electron and a positron were in the presence of a very strong electric field, they would move away from each other.
<span> TRUE; one is positive, and one is negative. If the field is strong enough, the action of the field will overcome the mutual attraction between them </span>
It is not possible for the electric field to ever be zero. FALSE: it IS possible, inside a conductor for instance
If a proton were placed on an electric field line, it would move in a direction anti-parallel to the field.
<span> FALSE: being positive, it would move in the SAME direction as the field</span>ic