Answer:
<em>Yes, they are moving in opposite direction one to the other.</em>
Explanation:
Velocity is a vector quantity, which means that it has both magnitude and direction. The magnitude shows the size of the velocity, and the direction shows which way it is moving in reference to a chosen reference direction. If the red box is assigned a positive velocity, and the blue box is assigned a negative velocity, as indicated in the question, then it means that the red box, and the blue box, both move in opposite direction to the other.
We have that the momentum p is given by the formula p=mv where m is the mass and v is the velocity. Since for A p=-14kgm/s and m=7, we have that the velocity is -14/7=-2m/s. Hence its speed is 2 m/s.
For b we have that p=15kgm/s and v=3m/s. Because m=p/v, we have m=3kg.
We also have that the momentum is conserved in this system. Hence, the net sum of the momentum of the 2 snowballs equals the momentum of the single giant ball. Hence, p(total)=p(combined)=-14+15=1kgm/s (momentum is a vector; the positive sign means that it tends to the positive direction).
Answer and Explanation:
This experiment is known as Lenz's tube.
The Lenz tube is an experiment that shows how you can brake a magnetic dipole that goes down a tube that conducts electric current. The magnet, when falling, along with its magnetic field, will generate variations in the magnetic field flux within the tube. These variations create an emf induced according to Faraday's Law:
This emf induced on the surface of the tube generates a current within it according to Ohm's Law:
This emf and current oppose the flux change, therefore a field will be produced in such a direction that the magnet is repelled from below and is attracted from above. The magnitude of the flux at the bottom of the magnet increases from the point of view of the tube, and at the top it decreases. Therefore, two "magnets" are generated under and above the dipole, which repel it below and attract above. Finally, the dipole feels a force in the opposite direction to the direction of fall, therefore it falls with less speed.
Average velocity is 1..2 mi/min east
Explanation:
- Velocity = Displacement/Time
Here, displacement = 48 mi - 42 mi = 6 miles
Time = 5 minutes
⇒ Average Velocity = 6/5 = 1.2 mi/min east
Answer:
4.3 x 10^16 kg
Explanation:
M = rv^2/G =[90,000 x 5.66^2] / [6.67 x 10^-11]
M = 43,226,446,776,611,694 = 4.3 x 10^16 kg - Ida's mass.