For this, we first calculate molecular weight of MgSiO₃:
Atomic masses:
Mg = 24
Si = 28
O = 16
Mr = 24 + 28 + 16 x 3
Mr = 100
moles = mass / Mr
moles = 237 / 100
moles = 2.37
Answer:
Hypsochromic compound, More polar solvent
Explanation:
Hypsochromic shift refers to the shift of solution colour to blue side of the visible spectrum (blueshift) with increasing polarity of the solvent. In our case, the solution changes to orange colour from red when solvent is changed. This means that the emission spectrum of the solution underwent blueshift. (As orange colour is on the 'blue' side for red colour.) So this is a hypsochromic shift, and the new solvent is more polar that the previous one, as it caused hypsochromic shift.
Answer:
0.071L
Explanation:
From the question given, we obtained the following data:
Molarity of HCl = 2.25 M
Mass of HCl = 5.80g
Molar Mass of HCl = 36.45g/mol
Number of mole of HCl =?
Number of mole = Mass /Molar Mass
Number of mole of HCl = 5.8/36.45 = 0.159mole
Now, we can obtain the volume required as follows:
Molarity = mole /Volume
Volume = mole /Molarity
Volume = 0.159mole/ 2.25
Volume = 0.071L
Answer = 43.2
Because to find the mass you multiply the amount of moles ( 1.6) by the mass of the element ( mass of aluminium is 27) so
1.6 x 27 = 43.2g
Hope this helps
Answer:
Acid rain, like all acids, generates dissolution of chemical compounds, and reacts together with bases to be able to carry out oxide reduction reactions, which by deduction is very likely to form new substances as a result of the dissolution or acid erosion caused.
Explanation:
Acid rain is more likely to occur in large cities or large sources of pollution, since the excess of carbon dioxide in the atmosphere causes it to increase its partial pressure in a condensed way in the clouds, this is how then this cloud when being loaded with water and then generating the rain drags these masses of condensed carbon dioxide in the form of acid rain.
The degree of acidity is directly proportional to the amount of partial pressure of carbon dioxide in the atmosphere.