<u>Given:</u>
Moles of He = 15
Moles of N2 = 5
Pressure (P) = 1.01 atm
Temperature (T) = 300 K
<u>To determine:</u>
The volume (V) of the balloon
<u>Explanation:</u>
From the ideal gas law:
PV = nRT
where P = pressure of the gas
V = volume
n = number of moles of the gas
T = temperature
R = gas constant = 0.0821 L-atm/mol-K
In this case we have:-
n(total) = 15 + 5 = 20 moles
P = 1.01 atm and T = 300K
V = nRT/P = 20 moles * 0.0821 L-atm/mol-K * 300 K/1.01 atm = 487.7 L
Ans: Volume of the balloon is around 488 L
Answer:
B. halocline
Explanation:
it is a zone in the oceanic water that changes depending on the depth
Hope This Helped Sorry If Wrong
a is the answer because all of the other answers are wrtong
the number of moles of oxygen required are 0.08 mol. The volume of oxygen that is required to react can be calculated by the formula shown below. Substitute the values in equation (II). Hence, the volume of oxygen required to react with 3.6 L hydrogen is 1.8L . I hope this helps if not I’m sorry