Answer:
20 J/g
Explanation:
In this question, we are required to determine the latent heat of vaporization
- To answer the question, we need to ask ourselves the questions:
What is latent heat of vaporization?
- It is the amount of heat required to change a substance from its liquid state to gaseous state without change in temperature.
- It is the amount of heat absorbed by a substance as it boils.
How do we calculate the latent heat of vaporization?
- Latent heat is calculated by dividing the amount of heat absorbed by the mass of the substance.
In this case;
- Mass of the substance = 20 g
- Heat absorbed as the substance boils is 400 J (1000 J - 600 J)
Thus,
Latent heat of vaporization = Quantity of Heat ÷ Mass
= 400 Joules ÷ 20 g
= 20 J/g
Thus, the latent heat of vaporization is 20 J/g
Answer:
All of the above
Explanation:
The correct answer is option E (All of the above)
All the options are alternative source of energy.
The option given are not the traditional way (energy production from coal) of extracting energy as the loss of natural resources does not take place in these source of energy.
energy extracted from wind, solar light , hydrogen ,etc are the source of energy the alternative source of production of energy because do not exploit the natural resources, reduce the carbon emission and energy produced by them is clean energy.
Given the fact that energy conversion is not entirely efficient, it is impossible to produce a perpetual motion machine.
<h3>What is a perpetual motion machine?</h3>
The perpetual motion machine in one that is able to work continuously without stopping. This would mean that the efficiency of this machine must that the machine is 100% efficient which violates the second law of thermodynamics.
Thus, given the fact that energy conversion is not entirely efficient and energy looses cause machines not function effectively, it is impossible to produce a perpetual motion machine.
Learn kore about a perpetual motion machine:brainly.com/question/13001849
#SPJ1
Answer:
The deceleration of the dragster upon releasing the parachute such that the wheels at B are on the verge of leaving the ground is 16.33 m/s²
Explanation:
The additional information to the question is embedded in the diagram attached below:
The height between the dragster and ground is considered to be 0.35 m since is not given ; thus in addition win 0.75 m between the dragster and the parachute; we have: (0.75 + 0.35) m = 1.1 m
Balancing the equilibrium about point A;
F(1.1) - mg (1.25) = 
- 1200(9.8)(1.25) = 1200a(0.35)
- 14700 = 420 a ------- equation (1)
--------- equation (2)
Replacing equation 2 into equation 1 ; we have :

1320 a - 14700 = 420 a
1320 a - 420 a =14700
900 a = 14700
a = 14700/900
a = 16.33 m/s²
The deceleration of the dragster upon releasing the parachute such that the wheels at B are on the verge of leaving the ground is 16.33 m/s²
They communicate their result to the scientific community- so to speak