1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natasha_Volkova [10]
3 years ago
13

Which of these is not shared by bohrs model and the modern atomic model?

Physics
1 answer:
KonstantinChe [14]3 years ago
3 0

Answer:

D. both have electrons that orbit the atomic nucleus in a simaler way

Explanation:

the bohrs model electrons orbit in a circular pattern were as the modern atomic model orbit in every which way

You might be interested in
Imagine that Earth stops orbiting the Sun but continues to rotate in place about its own axis at its current rate. In this case,
otez555 [7]

Answer:

The length of the solar day will get shorter.

Explanation:

  • The blue planet Earth not only rotates around it's own axis but also rotates around the Sun and everyday it moves a little bit around the axis.
  • Since the speed of the Earth's rotation on it's own axis and around the Sun is constant we don't feel the effects of the rotation.We can only feel the motion if the earth changes it's rotation speed.
  • If by any means or chance the Earth stopped spinning (stopped rotation) then the atmosphere surrounding the Earth would be in motion and all the Earth's land would be scoured clean.

7 0
3 years ago
Question 1 (1 point)
IrinaK [193]
  1.  momentum  
  2. Yes, if the elephant is standing still.
  3. Fullback  
  4. impulse acting on it.  
  5. 2.25 N∙s
  6. A cannon firing.
  7. Inelastic  
  8. it stays the same
  9. When the cue ball contacts the other balls, momentum is transferred causing them to gain momentum and speed.
  10. less than 3 m/s      
<h3><u><em>these are all correct i got an 100%</em></u><em><u> </u></em></h3>
8 0
2 years ago
. Consider the equation =0+0+02/2+03/6+04/24+5/120, where s is a length and t is a time. What are the dimensions and SI units of
Olegator [25]

Answer:

See Explanation

Explanation:

Given

s=s_0+v_0t+\frac{a_0t^2}{2}+ \frac{j_0t^3}{6}+\frac{S_0t^4}{24}+\frac{ct^5}{120}

Solving (a): Units and dimension of s_0

From the question, we understand that:

s \to L --- length

t \to T --- time

Remove the other terms of the equation, we have:

s=s_0

Rewrite as:

s_0=s

This implies that s_0 has the same unit and dimension as s

Hence:

s_0 \to L --- dimension

s_o \to Length (meters, kilometers, etc.)

Solving (b): Units and dimension of v_0

Remove the other terms of the equation, we have:

s=v_0t

Rewrite as:

v_0t = s

Make v_0 the subject

v_0 = \frac{s}{t}

Replace s and t with their units

v_0 = \frac{L}{T}

v_0 = LT^{-1}

Hence:

v_0 \to LT^{-1} --- dimension

v_0 \to m/s --- unit

Solving (c): Units and dimension of a_0

Remove the other terms of the equation, we have:

s=\frac{a_0t^2}{2}

Rewrite as:

\frac{a_0t^2}{2} = s_0

Make a_0 the subject

a_0 = \frac{2s_0}{t^2}

Replace s and t with their units [ignore all constants]

a_0 = \frac{L}{T^2}\\

a_0 = LT^{-2

Hence:

a_0 = LT^{-2 --- dimension

a_0 \to m/s^2 --- acceleration

Solving (d): Units and dimension of j_0

Remove the other terms of the equation, we have:

s=\frac{j_0t^3}{6}

Rewrite as:

\frac{j_0t^3}{6} = s

Make j_0 the subject

j_0 = \frac{6s}{t^3}

Replace s and t with their units [Ignore all constants]

j_0 = \frac{L}{T^3}

j_0 = LT^{-3}

Hence:

j_0 = LT^{-3} --- dimension

j_0 \to m/s^3 --- unit

Solving (e): Units and dimension of s_0

Remove the other terms of the equation, we have:

s=\frac{S_0t^4}{24}

Rewrite as:

\frac{S_0t^4}{24} = s

Make S_0 the subject

S_0 = \frac{24s}{t^4}

Replace s and t with their units [ignore all constants]

S_0 = \frac{L}{T^4}

S_0 = LT^{-4

Hence:

S_0 = LT^{-4 --- dimension

S_0 \to m/s^4 --- unit

Solving (e): Units and dimension of c

Ignore other terms of the equation, we have:

s=\frac{ct^5}{120}

Rewrite as:

\frac{ct^5}{120} = s

Make c the subject

c = \frac{120s}{t^5}

Replace s and t with their units [Ignore all constants]

c = \frac{L}{T^5}

c = LT^{-5}

Hence:

c \to LT^{-5} --- dimension

c \to m/s^5 --- units

4 0
3 years ago
The data table shows some data related to the Sun and the planets in our solar system.
AlexFokin [52]
You have selected the correct answer and blobbed over it with your pencil.

I assume you must have looked at Saturn's average distance, found 1427,
divided that number by 6, got 237 and change, then looked at the others,
and found that 228 was the only one that's anywhere close.
8 0
3 years ago
Read 2 more answers
Three wires meet at a junction. Wire 1 has a current of 0.40 A into the junction. The current of wire 2 is 0.57 A out of the jun
AlekseyPX

Answer:

a. 1.56 × 10¹⁸ electrons per second

b. The electrons in wire 3 flow into the junction.

Explanation:

Here is the complete question

Three wires meet at a junction. Wire 1 has a current of 0.40 A into the junction. The current of wire 2 is 0.65 A out of the junction. (a) How many electrons per second move past a point in wire 3? (b) In which direction do the electrons move in wire 3 -- into or out of the junction?

Solution

(a) How many electrons per second move past a point in wire 3?

Using Kirchhoff's current law, at the junction, i₁ + i₂ + i₃ = 0 where i₁ = current in wire 1 = 0.40 A, i₂ = current in wire 2 = 0.65 A and  i₃ = = current in wire 3,

So, i₃ = -(i₁ + i₂)

taking current flowing into the junction as positive and those leaving as negative, i₁ = + 0.40 A and i₂ = -0.65 A

So, i₃ = -(i₁ + i₂)

i₃ = -(0.40 A + (-0.65 A))

i₃ = -(0.40 A - 0.65 A)

i₃ = -(-0.25 A)

i₃ = 0.25 A

Since i₃ = 0.25 C/s and we have e = 1.602 × 10⁻¹⁹ C per electron, then the number of electrons flowing in wire 3 per second is i₃/e = 0.25 C/s ÷ 1.602 × 10⁻¹⁹ C per electron = 0.1561  × 10¹⁹ electrons per second = 1.561  × 10¹⁸ electrons per second ≅ 1.56 × 10¹⁸ electrons per second

(b) In which direction do the electrons move -- into or out of the junction?

Given that i₃ = + 0.25 A and that positive flows into the junction, thus, the electrons in wire 3 flow into the junction.

8 0
3 years ago
Other questions:
  • If a bat with a mass of 5 kg and acceleration of 2 m/s2 hits a ball whose mass is 0.5 kg in the forward direction, what is the r
    5·2 answers
  • A 10.0-cm-diameter and a 20.0-cm-diameter charged ring are arranged concentrically (so they share the same axis). Assume both ar
    6·1 answer
  • Which of the following is a common technique advertisers use to mislead consumers into using "fad diets" to achieve optimal heal
    10·2 answers
  • The Milky Way and the Andromeda are both________.
    13·1 answer
  • Describe the relationship between temperature and energy
    5·1 answer
  • A 25.0 kg object is held 8.50 m above the ground. Calculate its PE
    14·1 answer
  • Calculate the potential energy stored in an object of mass 50 kg at a height of 20 m from the ground.
    10·2 answers
  • When a guitar string is plucked, what part of the standing wave is found at the fixed ends of the string?(1 point)
    13·1 answer
  • Are you going to finish that CROISSANT?
    7·2 answers
  • A ball is launched straight up with initial speed of 30.0 m/s. What is the ball's velocity when it comes back to its original po
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!