1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NISA [10]
3 years ago
15

Tim and Rick both can run at speed Vr and walk at speed Vw, with Vr > Vw.

Physics
1 answer:
miss Akunina [59]3 years ago
8 0

Answer:

Δt =  \frac{2D}{Vw+Vr} - \frac{D}{2Vr} - \frac{D}{2Vw}

Explanation:

Hi there!

Using the equation of speed for the whole trip, we can obtain the time each one needed to cover the distance D.

The speed (v) is calculated by dividing the traveled distance (d) over the time needed to cover that distance (t):

v = d/t

Rick traveled half of the distance at Vr and the other half at Vw. Then, when v = Vr, the distance traveled was D/2 and the time is unknown, Δt1:

Vr = D/ (2 · Δt1)

For the other half of the trip the expression of velocity will be:

Vw = D/(2 · Δt2)

The total time traveled is the sum of both Δt:

Δt(total) = Δt1 + Δt2

Then, solving the first equation for Δt1:

Vr = D/ (2 · Δt1)

Δt1 = D/(2 · Vr)

In the same way for the second equation:

Δt2 = D/(2 · Vw)

Δt + Δt2 = D/(2 · Vr) + D/(2 · Vw)

Δt(total) = D/2 · (1/Vr + 1/Vw)

The time needed by Rick to complete the trip was:

Δt(total) = D/2 · (1/Vr + 1/Vw)

Now let´s calculate the time it took Tim to do the trip:

Tim walks half of the time, then his speed could be expressed as follows:

Vw = 2d1/Δt  Where d1 is the traveled distance.

Solving for d1:

Vw · Δt/2 = d1

He then ran half of the time:

Vr = 2d2/Δt

Solving for d2:

Vr · Δt/2 = d2

Since d1 + d2 = D, then:

Vw · Δt/2 +  Vr · Δt/2 = D

Solving for Δt:

Δt (Vw/2 + Vr/2) = D

Δt = D / (Vw/2 + Vr/2)

Δt = D/ ((Vw + Vr)/2)

Δt = 2D / (Vw + Vr)

The time needed by Tim to complete the trip was:

Δt = 2D / (Vw + Vr)

Let´s find the diference between the time done by Tim and the one done by Rick:

Δt(tim) - Δt(rick)

2D / (Vw + Vr) - (D/2 · (1/Vr + 1/Vw))

\frac{2D}{Vw+Vr} - \frac{D}{2Vr} - \frac{D}{2Vw} = Δt

Let´s check the result. If Vr = Vw:

Δt = 2D/2Vr - D/2Vr - D/2Vr

Δt = D/Vr - D/Vr = 0

This makes sense because if both move with the same velocity all the time both will do the trip in the same time.

You might be interested in
A student fills a tank of radius r with water to a height of h1 and pokes a small, 1.0 cm diameter hole at a distance h2 from th
Alik [6]

when a hole is made at the bottom of the container then water will flow out of it

The speed of ejected water can be calculated by help of Bernuolli's equation and Equation of continuity.

By Bernoulli's equation we can write

Po + \frac{1}{2}\rho v_1^2 + \rho g h = Po + \frac{1}{2}\rho v_2^2 + \rho g *0

Now by equation of continuity

A_1v_1 = A_2v_2

\pi (0.2)^2 v_1 = \pi (0.01)^2 v_2

from above equation we can say that speed at the top layer is almost negligible.

v_1 = 0

now again by equation of continuity

\rho g h = \frac{1}{2} \rho v^2

v = \sqrt{2 g h}

here we have

h = h_1 - h_2

h = 0.50 - 0.03 = 0.47m

now speed is given by

v = \sqrt{2* 9.8 * 0.47}

v = 3.03 m/s

7 0
3 years ago
Two subway stops are separated by 1210 m. If a subway train accelerates at 1.30 m/s2 from rest through the first half of the dis
solong [7]

Answer:

Part 1) Time of travel equals 61 seconds

Part 2) Maximum speed equals 39.66 m/s.

Explanation:

The final speed of the train when it completes half of it's journey is given by third equation of kinematics as

v^{2}=u^2+2as

where

'v' is the final speed

'u' is initial speed

'a' is acceleration of the body

's' is the distance covered

Applying the given values we get

v^2=0+2\times 1.30\times \frac{1210}{2}\\\\v^{2}=1573\\\\\therefore v=39.66m/s

Now the time taken to attain the above velocity can be calculated by the first equation of kinematics as

v=u+at\\\\v=0+1.30\times t\\\\\therefore t=\frac{39.66}{1.30}=30.51seconds

Since the deceleration is same as acceleration hence the time to stop in the same distance shall be equal to the time taken to accelerate the first half of distance

Thus total time of journey equalsT=2\times 30.51\approx61seconds

Part b)

the maximum speed is reached at the point when the train ends it's acceleration thus the maximum speed reached by the train equals 39.66m/s

4 0
3 years ago
Identify two fields where physical quantities are used in motion calculations​
larisa86 [58]

The two fields were physical quantities are used in motion calculations are length and mass with time.

The physical quantity in a field is referred as every point in a particular space time.

<h3>How physical quantities are used in motion calculations?</h3>

 If we consider an object, the physical property of the object is considered as physical quantity and to measure that object is known as units. The Physical quantity can be classified as elemental physical quantity and derived physical quantity. Length, mass, time, etc.. are elemental physical quantity, momentum, density, acceleration, etc... are derived physical quantity. Only for charge and temperature the physical quantity will be less than zero.

Length, mass and time  are the physical quantities used in motion calculations.

Learn more about motion calculations,

brainly.com/question/8701763

#SPJ2

4 0
2 years ago
How is the rotation of the sun, different from the rotation of the earth
vesna_86 [32]

Answer:

The Sun has a north and south pole, just as the Earth does, and rotates on its axis. However, unlike Earth which rotates at all latitudes every 24 hours, the Sun rotates every 25 days at the equator and takes progressively longer to rotate at higher latitudes, up to 35 days at the poles. This is known as differential rotation.

Explanation:

6 0
2 years ago
Glass has a _____________ index of refraction than air
rewona [7]

Glass has a <u>grater </u>index of refraction than air. The glass's and air's indexes of refraction will be 1.5 and 1, respectively.

<h3>What is an index of refraction?</h3>

The refractive index of a substance is a dimensionless quantity that specifies how quickly light passes through it in optics.

The index of refraction of the glass and air will be 1.5 and 1 respectively.

Hence,glass has a <u>grater </u>index of refraction than air.

To learn more about the index of refraction, refer to the link;

brainly.com/question/23750645

#SPJ4

4 0
2 years ago
Other questions:
  • PLEASE ANSWER<br> List: What are the three types of joints in the human body?
    15·1 answer
  • Please help meeeeeeeeeeeeeeeee
    14·1 answer
  • Find the power required to give a brick 60 j of potential energy in a time of 3.0 s .
    8·1 answer
  • A car is driving down a highway at a speed of 65 miles per hour. To the nearest second, how long wili it take the car to drive 1
    13·1 answer
  • If you kicked your mom <br><br> would she be mad?
    9·1 answer
  • A 4.2-m-diameter merry-go-round is rotating freely with an angular velocity of 0.79 rad/s . Its total moment of inertia is 1790
    9·1 answer
  • URGENT HELP! <br> How is it that two moving objects can have a net momentum of zero?
    8·2 answers
  • Septum: Left and right atrium: Pacemaker: Left and right ventricles: Valves:
    11·1 answer
  • How far does a 1.2g bullet with kinetic energy of 1.2 j go in 2 seconds ?<br><br><br>​
    15·1 answer
  • Your washer has power of 450 watts, and your dryer has a power of 3000
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!