1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ipatiy [6.2K]
3 years ago
13

Which object is least likely to allow light to pass through it?

Physics
2 answers:
Zarrin [17]3 years ago
8 0

Answer: The correct option is "a tree trunk".

Explanation:

Transparent is a material which allows the light to pass through it.

For example, glass.

An opaque is a material which does not allow light to pass through it.

For example, wood.

Translucent is a material which allows light partially to pass through it.

For example, butter paper.

In the given options, a pair of eyeglasses, a clear water bottle, a car windshield are transparent materials. But a tree trunk is an opaque as it does not light to pass through it.

Therefore, a tree trunk is least likely allow light to pass through it.

jeka57 [31]3 years ago
6 0

a tree truck

is the answer i hope this helps you xD


You might be interested in
All the organelles in a cell work together to help the cell and the whole organism function. Some diseases are caused by the fai
soldier1979 [14.2K]
The correct answer is cell membrane
5 0
3 years ago
Read 2 more answers
A small meteorite with mass of 1 g strikes the outer wall of a communication satellite with a speed of 2Okm/s (relative to the s
strojnjashka [21]

Answer:

The energy coverted to heat is 200 kilojoules.

Explanation:

GIven the absence of external forces exerted both on the small meteorite and on the communication satellite, the Principle of Linear Momentum is considered and let suppose that collision is completely inelastic and that satellite is initially at rest. Hence, the expression for the satellite-meteorite system:

m_{M}\cdot v_{M} + m_{S}\cdot v_{S} = (m_{M}+m_{S})\cdot v

Where:

m_{M}, m_{S} - Masses of the small meteorite and the communication satellite, measured in kilograms.

v_{M}, v_{S} - Speeds of the small meteorite and the communication satellite, measured in meters per second.

v - Final speed of the satellite-meteorite system, measured in meters per second.

The final speed of the satellite-meteorite system is cleared:

v = \frac{m_{M}\cdot v_{M}+m_{S}\cdot v_{S}}{m_{M}+m_{S}}

If m_{M} = 1\times 10^{-3}\,kg, m_{S} = 200\,kg, v_{M} = 20000\,\frac{m}{s} and v_{S} = 0\,\frac{m}{s}, the final speed is now calculated:

v = \frac{(1\times 10^{-3}\,kg)\cdot \left(20000\,\frac{m}{s} \right)+(200\,kg)\cdot \left(0\,\frac{m}{s} \right)}{1\times 10^{-3}\,kg+200\,kg}

v = 0.1\,\frac{m}{s}

Which means that the new system remains stationary and all mechanical energy from meteorite is dissipated in the form of heat. According to the Principle of Energy Conservation and the Work-Energy Theorem, the change in the kinetic energy is equal to the dissipated energy in the form of heat:

K_{S} + K_{M} - K - Q_{disp} = 0

Q_{disp} = K_{S}+K_{M}-K

Where:

K_{S}, K_{M} - Initial translational kinetic energies of the communication satellite and small meteorite, measured in joules.

K - Kinetic energy of the satellite-meteorite system, measured in joules.

Q_{disp} - Dissipated heat, measured in joules.

The previous expression is expanded by using the definition for the translational kinetic energy:

Q_{disp} = \frac{1}{2}\cdot [m_{M}\cdot v_{M}^{2}+m_{S}\cdot v_{S}^{2}-(m_{M}+m_{S})\cdot v^{2}]

Given that m_{M} = 1\times 10^{-3}\,kg, m_{S} = 200\,kg, v_{M} = 20000\,\frac{m}{s}, v_{S} = 0\,\frac{m}{s} and v = 0.1\,\frac{m}{s}, the dissipated heat is:

Q_{disp} = \frac{1}{2}\cdot \left[(1\times 10^{-3}\,kg)\cdot \left(20000\,\frac{m}{s} \right)^{2}+(200\,kg)\cdot \left(0\,\frac{m}{s} \right)^{2}-(200.001\,kg)\cdot \left(0.001\,\frac{m}{s} \right)^{2}\right]Q_{disp} = 200000\,J

Q_{disp} = 200\,kJ

The energy coverted to heat is 200 kilojoules.

4 0
3 years ago
A. Telephone signals are often transmitted over long distances by microwaves. What is the frequency of microwave radiation with
zzz [600]

(a) 10 GHz is the frequency of microwave radiation.

(b) 0.167 ms is required by the microwave to travel between two mountains.

Answer:

Explanation:

(a). 1 MHz is the frequency of microwave radiation.

(b)  0.167 ms is required by the microwave to travel between two mountains.

Answer:

Explanation:

a. Frequency is the measure of number of times a same thing will be repeated in a given time interval for a given time. And wavelength is the measure of distance between two successive crests or troughs. So wavelength and frequency are inversely proportional to each other. And velocity of light is the proportionality constant.

So frequency of microwave radiation = Speed of light/Wavelength of radiation

Frequency = \frac{3*10^{8} }{3*10^{-2} }

Frequency = 10^{8+2} = 10^{10}=10 GHz

So 10 GHz is the frequency of microwave radiation.

b). As microwave is a part of light waves, so it will be experiencing the speed of light.

As the speed is 3*10^{8} m/s and the distance between the two mountains is given as 50 km, then time can be calculated as

Time = Distance/Velocity

Time = \frac{50*10^{3} m}{3*10^{8} }=16.67*10^{3-8}=16.67*10^{-5}

So time = 0.167 ms.

Thus, 0.167 ms is required by the microwave to travel between two mountains.

6 0
3 years ago
Consider two parallel plate capacitors. The plates on Capacitor B have half the area as the plates on Capacitor A, and the plate
vichka [17]

Answer:

CB = 4.45 x 10⁻⁹ F = 4.45 nF

Explanation:

The capacitance of a parallel plate capacitor is given by the following formula:

C = ε₀A/d

where,

C = Capacitance

ε₀ = Permeability of free space

A = Area of plates

d = Distance between plates

FOR CAPACITOR A:

C = CA = 17.8 nF = 17.8 x 10⁻⁹ F

A = A₁

d = d₁

Therefore,

CA = ε₀A₁/d₁ = 17.8 x 10⁻⁹ F   ----------------- equation 1

FOR CAPACITOR B:

C = CB = ?

A = A₁/2

d = 2 d₁

Therefore,

CB = ε₀(A₁/2)/2d₁

CB = (1/4)(ε₀A₁/d₁)

using equation 1:

CB = (1/4)(17.8 X 10⁻⁹ F)

<u>CB = 4.45 x 10⁻⁹ F = 4.45 nF</u>

5 0
3 years ago
A burning candle provides :
mixer [17]
This would be B



Hope this helped
8 0
3 years ago
Other questions:
  • Apply what you know about forces to hypothesize how balanced and unbalanced forces acting on a moving car would affect the motio
    9·1 answer
  • A tree limb of mass 12 kg falls straight down. If air resistance exerts 27 N of force on the limb as it falls, what is the net f
    5·2 answers
  • State Archimedes' principle
    12·1 answer
  • If an atom gains two electrons in a chemical reaction, what is its charge?
    10·1 answer
  • Terra tosses a 0.20 kg volleyball straight up at 10.0 m/s. how high does it go?
    5·1 answer
  • The potential energy possessed by a molecule is dependent upon
    12·1 answer
  • After completing an experiment, all chemical wastes should be
    11·1 answer
  • Find the magnitude of the buoyant force on the block. The acceleration of gravity is 9.8 m/s 2 . Answer in units of N.
    7·1 answer
  • What is an inclined plane? How does it make our work easier?
    7·1 answer
  • What is grandfather Paradox?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!