Input work = 9.63×10³ J.
Output work = 3.0×10³ J
By definition,
Efficiency = (Output work)/(Input work)
= (3.0×10³)/(9.63×10³)
= 0.31 = 31%
Answer: 31%
Answer:
Increases
Explanation:
The expression for the capacitance is as follows as;

Here, C is the capacitance,
is the permittivity of free space, A is the area and d is the distance between the parallel plate capacitor.
It can be concluded from the above expression, the capacitance is inversely proportional to the distance. According to the given problem, the capacitor is disconnected from the battery and the distance between the plates is increased. Then, the capacitance of the given capacitor will decrease in this case.
The expression for the energy stored in the parallel plate capacitor is as follows;

Here, E is the energy stored in the capacitor, C is the capacitance and Q is the charge.
Energy stored in the given capacitor is inversely proportional to the capacitor. The charge on the capacitor is constant. In the given problem, as the distance between the parallel plates is being separated, the energy stored in this capacitor increases.
Therefore, the option (c) is correct.
Answer:
radios work when electrons are speeding up and dow the attena, patters structure and shape make music pleasing to hear. (more info below)
Explanation:
a radio works when electrons are speeding up and down the antenna, sending out electromagnetic waves. Radiation waves travel through the air at the speed of light. When the radio waves reach the antenna, the electrons vibrate within the antenna and reproduce the initial signal. to make music pleasing to hear it has to have patterns, structure, shape.
hope this helped!
Answer:
A) v = 40 m / s, B) v_average = 20 m / s
Explanation:
For this exercise we will use the kinematics relations
A) the final velocity for t = 5 s and since the body starts from rest its initial velocity is zero
v = vo + a t
v = 0 + 8 5
v = 40 m / s
B) the average velocity can be found with the relation
v_average = vf + vo / 2
v-average = 0+ 40/2
v_average = 20 m / s
Answer:
neutron is a subatomic particle of about the same mass as a proton but without an electric charge, present in all atomic nuclei except those of ordinary hydrogen.