Answer:
Kinetic energy = (1/2) (mass) (speed²)
Original KE = (1/2) (1430 kg) (7.5 m/s)² = 40,218.75 joules
Final KE = (1/2) (1430 kg) (11.0 m/s)² = 86,515 joules
Work done during the acceleration = (40218.75 - 86515) = 46,296.25 joules
Power = work/time = 46,296.25 joules / 9.3 sec = 4,978.1 watts .
Explanation:
Dont report my answer please
Answer:
Surface 1 is blacktop, Surface 2 is gravel, and Surface 3 is ice.
Explanation:
Hope this helps! :]
Answer:
The mutual speed immediately after the touchdown-saving tackle is 4.80 m/s
Explanation:
Given that,
Mass of halfback = 98 kg
Speed of halfback= 4.2 m/s
Mass of corner back = 85 kg
Speed of corner back = 5.5 m/s
We need to calculate their mutual speed immediately after the touchdown-saving tackle
Using conservation of momentum

Where,
= mass of halfback
=mass of corner back
= velocity of halfback
= velocity of corner back
Put the value into the formula



Hence, The mutual speed immediately after the touchdown-saving tackle is 4.80 m/s
A wave can be described as the disturbance of particles in an area. Think about it this way: particles (matter) carry energy. For all the laws of physics to work, this energy must be "traded" somehow. This happens by miniscule vibrations in the particles, which are apparent disturbances. This creates a wave, and therefore a wave is, indeed, a disturbance.<span />