Explanation:
Gases are very less denser also, they've negligible intermolecular force of attraction between the particles of the gas. So, they all are free to roam seperately and hence making a negligible volume for which they become heavy settle down.
Answer:
5L
Explanation:
Please see the step-by-step solution in the picture attached below.
Hope this answer can help you. Have a nice day!
Answer:
838 torr
Step-by-step explanation:
To solve this problem, we can use the <em>Combined Gas Laws</em>:
p₁V₁/T₁ = p₂V₂/T₂ Multiply each side by T₁
p₁V₁ = p₂V₂ × T₁/T₂ Divide each side by V₁
p₁ = p₂ × V₂/V₁ × T₁/T₂
<em>Data:
</em>
p₁ = ?; V₁ = 2.42 L; T₁ = 27.0 °C
p₂ = 754 torr; V₂ = 2.37 L; T₂ = -8.8 °C
Calculations:
(a) Convert <em>temperatures to kelvins
</em>
T₁ = (27.0 + 273.15) K = 300.15 K
T₂ = (-8.8 + 273.15) K = 264.35 K
(b) Calculate the<em> pressure
</em>
p₁ = 754 torr × (2.37 L/2.42) × (300.15/264.35)
p₁ = 754 torr × 0.979 × 1.135
p₁ = 838 torr
Answer:
P = 20atm
Explanation:
P1 = 10atm
T1 = 10K
P2 = ?
T2 = 20K
This question requires the use of pressure law which states that the pressure of a fixed mass of gas is directly proportional to its temperature provided its volume remains constant
Mathematically,
P = kT, k = P / T
P1 / T1 = P2 / T2 = P3 / T3=........=Pn / Tn
P1 / T1 = P2 / T2
P2 = (P1 × T2) / T1
P2 = (10 × 20) / 10
P2 = 20atm
The final pressure of the gas is 20atm