Answer:
The second law of thermodynamics states in an isolated system, the entropy (the amount of thermal energy that cannot be converted into mechanical work, also known as the amount of disorder) always increases, therefore, an isolated system always require an external input (new sources) of energy for there to be orderliness or for the available energy of the system to remain constant or increase
Explanation:
Some of the most common examples of mechanical waves are water waves, sound waves, and seismic waves. There are three types of mechanical waves: transverse waves, longitudinal waves, and surface waves.
Answer:
For Xenon fluoride, the average bond energy is 132kj/mol
For tetraflouride,the average bond energy is 150.5kj/mol.
For hexaflouride, the average bond energy is 146.5 kj/mol
Explanation:
For xenon fluoride
105/2 = 52.5
For F-F
159/2 = 79.5
Average bond energy of Xe-F = 79.5 + 52.5 = 132kj/mole
For tetraflouride
284/4 = 71
For F-F
159/2 = 79.5
Average bond energy = 79.5 + 71 = 150.5kj/mol
For hexaflouride
402/6 = 67
F-F = 159/2 = 79.5
Average bond energy = 67 + 79.5 = 146.5kj/ mol
Answer:
F = M a
W = M g equivalent equation to express weight of object of mass M
M = W / g = 2867 N / 9.8 m/s^2 = 292.6 kg
Answer:
When light enters from air to water i.e. it is moving from rarer to denser medium, it changes its original path as there is a change of speed of light and deflects itself towards the normal. This is known as the refraction of light and this is why a pencil in a cup of water looks as if it is broken and larger.
Explanation: