I would say the first three. But I'm not 100% sure. I'm truly sorry if it's wrong
The molality of a solute is equal to the moles of solute per kg of solvent. We are given the mole fraction of I₂ in CH₂Cl₂ is <em>X</em> = 0.115. If we can an arbitrary sample of 1 mole of solution, we will have:
0.115 mol I₂
1 - 0.115 = 0.885 mol CH₂Cl₂
We need moles of solute, which we have, and must convert our moles of solvent to kg:
0.885 mol x 84.93 g/mol = 75.2 g CH₂Cl₂ x 1 kg/1000g = 0.0752 kg CH₂Cl₂
We can now calculate the molality:
m = 0.115 mol I₂/0.0752 kg CH₂Cl₂
m = 1.53 mol I₂/kg CH₂Cl₂
The molality of the iodine solution is 1.53.
Potassium or any other metals.
The alveoli are surrounded<span> by tiny blood vessels, called capillaries. The </span>alveoli<span> and capillaries both have very thin walls, which allow the oxygen to pass from the </span>alveoli<span>to the blood. The capillaries then connect to larger blood vessels, called veins, which bring the oxygenated blood from the lungs to the heart.</span>