Answer:
9.51
Explanation:
The distance s is given by:

The change in distance is given by the time derivative of s:

For the time t you solve the equation of distance x for time:

Plugging in for t:

To solve this exercise it is necessary to apply the concepts related to Centripetal and Perimeter acceleration of a circle.
The perimeter of a circle is defined by

Where,
r= radius
While centripetal acceleration is defined by

Where,
v= velocity
r= radius
PART A)
The distance of a body can be defined based on the speed and the time traveled, that is
x = v*t
For our values the distance is equal to
x = 15*115=1725m
The plane when going to make the turn from east to south makes a quarter of the circumference that is

The same route you take is the distance traveled, that is




PART B)
With the radius is possible calculate he centripetal acceleration,



Therefore the radius of the curva that the plane follows in making the turn is 1098.17m with a centripetal acceleration of 
I can't answer this question without a figure. I've found a similar problem as shown in the first picture attached. When adding vectors, you don't have to add the magnitudes only, because vectors also have to factor in the directions. To find the resultant vector C, connect the end tails of the individual vectors.
<em>The red line (second picture) represents the vector C.</em>
Answer:
6.8 s
Explanation:
Let's say the west end of the field is position 0 m and the east end of the field is position 250 m.
The position of kitten A is:
x = 0 + 25 t
And the position of kitten B is:
x = 250 - 12 t
The kittens collide when they have the same position:
25 t = 250 - 12 t
37 t = 250
t ≈ 6.8 s