1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
k0ka [10]
3 years ago
10

A ball of mass 0.500 kg is carefully balanced on a shelf that is 2.70 m above the ground. What is its gravitational potential en

ergy
Physics
1 answer:
ratelena [41]3 years ago
8 0

Answer:

The gravitational potential energy of the ball is 13.23 J.

Explanation:

Given;

mass of the ball, m = 0.5 kg

height of the shelf, h = 2.7 m

The gravitational potential energy is given by;

P.E = mgh

where;

m is mass of the ball

g is acceleration due to gravity = 9.8 m/s²

h is height of the ball

Substitute the givens and solve for gravitational potential energy;

PE = (0.5 x 9.8 x 2.7)

P.E = 13.23 J

Therefore, the gravitational potential energy of the ball is 13.23 J.

You might be interested in
Monochromatic light of wavelength 385 nm is incident on a narrow slit. On a screen 3.00 m away, the distance between the second
LiRa [457]

To solve this problem it is necessary to apply the concepts related to the concept of overlap and constructive interference.

For this purpose we have that the constructive interference in waves can be expressed under the function

a sin\theta = m\lambda

Where

a = Width of the slit

d = Distance of slit to screen

m = Number of order which represent the number of repetition of the spectrum

\theta = Angle between incident rays and scatter planes

At the same time the distance on the screen from the central point, would be

sin\theta = \frac{y}{d}

Where y = Represents the distance on the screen from the central point

PART A ) From the previous equation if we arrange to find the angle we have that

\theta = sin^{-1}(\frac{y}{d})

\theta = sin^{-1}(\frac{1.4*10^{-2}}{3})

\theta = 0.2673\°

PART B) Equation both equations we have

a sin\theta = m\lambda

a \frac{y}{d} = m\lambda

Re-arrange to find a,

a = \frac{(2)(385*10^{-9})(3)}{(1.4*10^{-2})}

a = 1.65*10^{-4}m

8 0
3 years ago
The power in an electrical circuit is given by the equation P= RR, where /is
Rainbow [258]

Answer:D

Explanation:Electric power=I*I*R

=12*12*100

=14400watts

6 0
3 years ago
Please answer ASAP for brainliest
OlgaM077 [116]

Answer:

Question #1- Scientists agree to a standard way of reporting measured quantities in which the number of reported digits reflects the precision in the measurement- more digits, more precision; less digits, less precision. You just studied 14 terms!

Question #2-  Units are important because without proper measurement and units to express them, we can never express physical laws precisely just from qualitative reasoning. Units are incredibly important to physics. Two of the most important reasons are the following: (1) they help us. to avoid making mistakes in computation, and (2) they serve as a check on computations once they are completed. In the first case, you can avoid adding 3m and 25cm and coming up with the wrong answer.

Explanation: Hope this helps please mark brainliest!

4 0
3 years ago
Read 2 more answers
Consider an ideal gas at 27.0 degrees Celsius and 1.00 atmosphere pressure. Imagine the molecules to be uniformly spaced, with e
My name is Ann [436]

To solve the exercise it is necessary to keep in mind the concepts about the ideal gas equation and the volume in the cube.

However, for this case the Boyle equation will not be used, but the one that corresponds to the Boltzmann equation for ideal gas, in this way it is understood that

PV =NkT

Where,

N = Number of molecules

k = Boltzmann constant

V = Volume

T = Temperature

P = Pressure

Our values are given as,

N = 1

k = 1.38*10^{-23}J/K

T = 27\°C = 27\°C + 273 = 300K

P = 1atm = 101325Pa

Rearrange the equation to find V we have,

V = \frac{NkT}{P}

V = \frac{1(1.38*10^{-23})(300K)}{101325Pa}

V = 4.0858*10^{-26}m^3

We know that length of a cube is given by

V = L^3

Therefore the Length would be given as,

L = V^{1/3}

L = (4.0858*10^{-26})^{1/3}

L = 3.445*10^{-9}m

Therefore each length of the cube is 3.44nm

7 0
3 years ago
Under certain circumstances, potassium ions (K+) in a cell will move across the cell membrane from the inside to the outside. Th
choli [55]

Answer:

1.368\times 10^{-20}\ J

Explanation:

q = Charge in the potassium ion = 19e-18e

e = Charge of electron = 1.6\times 10^{-19}\ C

V_2-V_1 = Change in potential = 0-(-85.5\times 10^{-3})

Change in electric potential is given by

E=q(V_2-V_1)\\\Rightarrow E=(19e-18e)(0-(-85.5\times 10^{-3})\\\Rightarrow E=1.6\times 10^{-19}\times 85.5\times 10^{-3}\\\Rightarrow E=1.368\times 10^{-20}\ J

The energy is 1.368\times 10^{-20}\ J

3 0
3 years ago
Other questions:
  • Leap years _____. happen because the Earth revolves around the sun in less than 365 days make up for the extra one-fourth day th
    15·1 answer
  • A snail slowly travels down the sidewalk at a pace of 4 cm/s. how long will it take the snail to reach a distance of 20 cm?
    12·1 answer
  • If a rooster lays and egg on the middle of the roof, which way does the egg role?
    6·1 answer
  • Which layer of the sun do we normally see?
    10·1 answer
  • 1 point
    15·1 answer
  • A wave with a high amplitude______?
    13·1 answer
  • Students were asked to place a mint in their mouths and determine how long it took for the mint to dissolve. The condition of th
    7·2 answers
  • You lift a stuffed toy up above the ground (over your head).
    5·1 answer
  • 2. nakabuti ba sa mga bansa sa kanlurang asya ang sistemang mandato na ipinatupad ng mga bansang kanluranin​
    13·1 answer
  • A machine has a mechanical advantage of 0.6. what force should be applied to the machine to make it apply 600 n to an object? 10
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!