i believ that the answer would be
the acceleration of B is 0.2
<u>Answer:</u> 0.774 g/cm^3
<u>Explanation:</u>
Density is measured in g/cm^3
480g / 620cm^3 = 0.774 g/cm^3
Does this help? Sorry if not.
Answer:
P = 180 [w]
Explanation:
To solve this problem we must use ohm's law, which is defined by the following formula.
V = I*R & P = V*I
where:
V = voltage = 200[volts]
I = current [amp]
R = resistance [ohm]
P = power [watts]
Since the bulbs are connected in series, the powers should be summed
P = 60 + 60 + 60
P = 180 [watts]
Now we can calculate the current
I = 180/200
I = 0.9[amp]
Attached is an image where we see the three bulbs connected in series, in the circuit we see that the current is the same for all the elements connected to the circuit.
And the power is defined by P = V*I
we know that the voltage is equal to 200[V], therefore
P = 200*0.9
P = 180 [w]
Answer: The average speed is 27,24 mph (exactly 1008/37 mph)
Explanation:
This is solved using a three rule: We know the speeds and the distances, what we can obtain from it is the time used. It is done like this:
1h--->18mi
X ---->20 mi, then X=20mi*1h/18mi= 10/9 h=1,111 h
1h--->56mi
X ---->20 mi, then X=20mi*1h/56mi= 5/14 h=0,35714 h
Then the average speed is calculated by taking into account that it was traveled 40mi and the time used was 185/126 h=1,468 h and since speed is distance over time we get the answer. Average speed= 40mi/(185/126 h)=1008/37 mph=27,24 mph.
Answer:This also means that Mercury's surface gravity is 3.7 m/s2, which is the equivalent of 38% of Earth's gravity (0.38 g). This means that if you weighed 100 kg (220 lbs) on Earth, you would weigh 38 kg (84 lbs) on Mercury.
Explanation: