Answer:
a. 7.62cm
b. Real and inverted
c. 2.76 cm
d. 3450
Explanation:
We proceed as follows;
a. the lens equation that relates the object distance to the image distance with the focal length is given as follows;
1/f = 1/p + 1/q
making q the subject of the formula;
q = pf/p-f
From the question;
p = 4.70m
f = 7.5cm = 0.075m
Substituting these, we have ;
q = (4.7)(0.075)/(4.7-0.075) = 0.3525/4.625 = 0.0762 = 7.62 cm
b. The image is real and inverted since the image distance is positive
c. We want to calculate how tall the image is
Mathematically;
h1 = (q/p)h0
h1 = (7.62/4.70)* 1.7
h1 = 2.76 cm
d. We want to calculate the number of pixels that fit into this image
Mathematically:
n = h1/8 micro meter
n = 2.76cm/8 micro meter = 2.76 * 10^-2/8 * 10^-6 = 3450
Answer:
s = 20 m
Explanation:
given,
mass of the roller blader = 60 Kg
length = 10 m
inclines at = 30°
coefficient of friction = 0.25
using conservation of energy
u = 9.89 m/s
Using second law of motion
ma =μ mg
a = μ g
a = 0.25 x 9.8
a = 2.45 m/s²
Using third equation of motion ,
v² - u² = 2 a s
0² - 9.89² = 2 x 2.45 x s
s = 20 m
the distance moved before stopping is 20 m
Answer:
Object should be placed at a distance, u = 7.8 cm
Given:
focal length of convex lens, F = 16.5 cm
magnification, m = 1.90
Solution:
Magnification of lens, m = -
where
u = object distance
v = image distance
Now,
1.90 = 
v = - 1.90u
To calculate the object distance, u by lens maker formula given by:
u = 7.8 cm
Object should be placed at a distance of 7.8 cm on the axis of the lens to get virtual and enlarged image.
<span>Diamond slowdown light more than Quartz , because diamonds have a greater index of refraction. Light will bend when its move from one medium to another. The Index of Refraction of Material is found by comparing the speed of light in their respective mediums.</span>
Explanation:
Since I can only do this by observation, the elevation of F is approximately 850km and the elevation of B is 925km.