The correct answer (sample response) is:
The image seems to be behind the mirror, but nothing is really there.
Include the following in your response:
The image appears to be behind the mirror.
If someone looks behind the mirror, there is no image there.

Explanation:
According to the Faraday-Lenz law, a conductive ring generates an induced current due to the change in the magnetic flux caused by the motion of the bar magnet. This induced current generates a magnetic field opposite to the magnetic field of the bar, generating an upward force that opposes the weight of the bar magnet, Therefore, it does not move as a freely falling object.
Answer:
Given that
D= 4 mm
K = 160 W/m-K
h=h = 220 W/m²-K
ηf = 0.65
We know that

For circular fin


m = 37.08


By solving above equation we get
L= 36.18 mm
The effectiveness for circular fin given as


ε = 23.52
Answer:
H = 1/2 g t^2 where t is time to fall a height H
H = 1/8 g T^2 where T is total time in air (2 t = T)
R = V T cos θ horizontal range
3/4 g T^2 = V T cos θ 6 H = R given in problem
cos θ = 3 g T / (4 V) (I)
Now t = V sin θ / g time for projectile to fall from max height
T = 2 V sin θ / g
T / V = 2 sin θ / g
cos θ = 3 g / 4 (T / V) from (I)
cos θ = 3 g / 4 * 2 sin V / g = 6 / 4 sin θ
tan θ = 2/3
θ = 33.7 deg
As a check- let V = 100 m/s
Vx = 100 cos 33.7 = 83,2
Vy = 100 sin 33,7 = 55.5
T = 2 * 55.5 / 9.8 = 11.3 sec
H = 1/2 * 9.8 * (11.3 / 2)^2 = 156
R = 83.2 * 11.3 = 932
R / H = 932 / 156 = 5.97 6 within rounding
Answer:
The equatiom of kinetic energy is 1/2×m×v² where m represents mass and v is velocity :

The unit for kinetic energy is measured in Joules (J).