Answer:
(a) 1000 N/C
Explanation:
Kinetic energy of electron, K = 1.6 x 10^-17 J
distance, d = 10 cm = 0.1 m
Let the potential difference is V and the electric field is E.
(a) The relation between the kinetic energy and the potential difference is
K = e V
V = K / e
Where, e be the electronic charge = 1.6 x 10^-19 C
V = 
V = 100 V
The relation between the electric field and the potential difference is given by
V = E x d
100 = E x 0.1
E = 1000 N/C
(b) The force acting on the electron, F = q E
where q be the charge on electron
So, F = -e x E
It means the direction of electric field and the force are both opposite to each other.
The direction of electric field and the force on electron is shown in the diagram.
In collision that are categorized as elastic, the total kinetic energy of the system is preserved such that,
KE1 = KE2
The kinetic energy of the system before the collision is solved below.
KE1 = (0.5)(25)(20)² + (0.5)(10g)(15)²
KE1 = 6125 g cm²/s²
This value should also be equal to KE2, which can be calculated using the conditions after the collision.
KE2 = 6125 g cm²/s² = (0.5)(10)(22.1)² + (0.5)(25)(x²)
The value of x from the equation is 17.16 cm/s.
Hence, the answer is 17.16 cm/s.
Answer: reaction force = -558N
Explanation:
w = f = 558N
since action force and reaction force are equal in magnitude and opposite in direction,
reaction force = -(f)
reaction force = -558N
if that helps.
Answer:
<em>Well, I think the best answer will be is </em><em>1.59 g/mL Good Luck!</em>