Answer:
a. 0.143 mm b. 77.6 rad/m c. 483.18 rad/s d. +1
Explanation:
a. ym
Since the amplitude is 0.143 mm, ym = amplitude = 0.143 mm
b. k
We know k = wave number = 2π/λ where λ = wavelength.
Also, λ = v/f where v = speed of wave in string = √(T/μ) where T = tension in string = 19.3 N and μ = mass per unit length = 5.12 g/cm = 5.12 ÷ 1000 kg/(1 ÷ 100 m) = 0.512 kg/m and f = frequency = 76.9 Hz.
So, λ = v/f = √(T/μ)/f
substituting the values of the variables into the equation, we have
λ = √(T/μ)/f
= √(19.6 N/0.512 kg/m)/76.9 Hz
= √(38.28 Nkg/m)/76.9 Hz
= 6.187 m/s ÷ 76.9 Hz
= 0.081 m
= 81 mm
So, k = 2π/λ
= 2π/0.081 m
= 77.6 rad/m
c. ω
ω = angular frequency = 2πf where f = frequency of wave = 76.9 Hz
So, ω = 2πf
= 2π × 76.9 Hz
= 483.18 rad/s
d. The correct choice of sign in front of ω?
Since the wave is travelling in the negative x - direction, the sign in front of ω is positive. That is +1.
Applying Newton's Second Law of Motion, the acceleration of the ball is 16.8 
<u>Given the following data:</u>
- Acceleration due to gravity = 9.8

To find ball's acceleration, we would apply Newton's Second Law of Motion:
First of all, we would determine the net force acting on the ball.

× 
Downward force = 4.9 N

Net force = 8.4 N
Mathematically, Newton's Second Law of Motion is given by this formula;

<em>Acceleration = 16.8 </em>
<em />
Therefore, the acceleration of the ball is 16.8 
Read more here: brainly.com/question/24029674
Answer:
ΔP = 20000 N s
Explanation:
To solve this problem we use the relation between momentum and moment
I = Δp
let's calculate the momentum
I = ∫F dt
if we use the average force
I = F t
I = 10000 2
I = 20000 N s
therefore with the first equation
ΔP = I = 20000 N s
Answer:
Chemical reactions are represented on paper by chemical equations. For example, hydrogen gas (H2) can react (burn) with oxygen gas (O2) to form water (H20). The chemical equation for this reaction is written as: The '+' is read as 'reacts with' and the arrow '' means 'produces'.
Explanation:
hope this helps