A) d. 10T
When a charged particle moves at right angle to a uniform magnetic field, it experiences a force whose magnitude os given by

where q is the charge of the particle, v is the velocity, B is the strength of the magnetic field.
This force acts as a centripetal force, keeping the particle in a circular motion - so we can write

which can be rewritten as

The velocity can be rewritten as the ratio between the lenght of the circumference and the period of revolution (T):

So, we get:

We see that this the period of revolution is directly proportional to the mass of the particle: therefore, if the second particle is 10 times as massive, then its period will be 10 times longer.
B) 
The frequency of revolution of a particle in uniform circular motion is

where
f is the frequency
T is the period
We see that the frequency is inversely proportional to the period. Therefore, if the period of the more massive particle is 10 times that of the smaller particle:
T' = 10 T
Then its frequency of revolution will be:

Answer:
Explanation:
F = ma
m = F/a
m = 107.2/1.6 = 67 kg
so Naoki's mass must be the total mass - mass of the bike
so her mass is 67 - 9 = 58 kg...B
Answer:
The correct answers to the question are
The following statements about neurons are NOT true
A. The resting membrane potential is generally in the range of -40 mv to -75 mv.
C. Neurons repolarize by opening chloride channels on the membrane.
D. An action potential can occur when the neuron's sodium gates open.
Explanation:
A. The resting membrane potential is generally in the range of -40 mv to -75 mv.
Not true the resting potential for neurons range from -70 to -80 mv
B. Maintaining resting membrane potential requires the use of energy from ATP True
The potential of the membrane arises from the splitting of potassium ions from the intracellular anions by agents powered by ATP
C. Neurons repolarize by opening chloride channels on the membrane
Not True
Repolarization occurs by the outward transit of the positively charged K⁺ from the cell
D. An action potential can occur when the neuron's sodium gates open.
Not True
An action potential takes place once the neuron transmits information along an axon. An action potential results when different ions pass through the membrane of the neuron
Newton's first law states that every object will remain at rest or in uniform motion in a straight line unless compelled to change its state by the action of an external force