Answer:
d
Explanation:
the dendrites is a part of the neuron receives messages from other neurons. Dendrites extend out from the cell body and receive messages from other nerve cells
Answer:
Vertical Height = 0.784 meter, Speed back at starting point = 10 m/s
Explanation:
Given Data:
V is the overall velocity vector,
and
are its initial vertical and horizontal components

To find:
Max Height
achieved
Calculation:
1) Using the
equation of motion, we know

2) In terms of gravity
height
and the vertical component of Velocity
.
3) As
as at maximum height the vertical component of velocity is zero maximum height achieved

putting values
4) 
5) As for the speed when it reaches back its starting point, it will have a speed similar to its launching speed, the reason being the absence of air friction (Air drag)
Answer: True
A water pump
belong to a positive displacement pump that provides constant flow of water at
fixed speed, regardless of changes in the counter pressure. The two main types
of positive displacement pump are rotary pumps and reciprocating pumps.
Moreover, water
pump is a reciprocating positive displacement pump that have an expanding
cavity on the suction side and a decreasing cavity on the discharge side. In
water pumps, the liquid flows into the pumps as the cavity on the suction side
expands and then the liquid flows out of the discharge as the cavity collapses
providing water in a pail.
Answer:
=20 turns
Explanation:
The given case is a step down transformer as we need to reduce 120 V to 6 V.
number of turns on primary coil N_{P}= 400
current delivered by secondary coil I_{S}= 500 mA
output voltage = 6 V (rms)
we know that

putting values we get


to calculate number of turns in secondary

therefore,
=20 turns
Answer:
The upper limit on the flow rate = 39.46 ft³/hr
Explanation:
Using Ergun Equation to calculate the pressure drop across packed bed;
we have:

where;
L = length of the bed
= viscosity
U = superficial velocity
= void fraction
dp = equivalent spherical diameter of bed material (m)
= liquid density (kg/m³)
However, since U ∝ Q and all parameters are constant ; we can write our equation to be :
ΔP = AQ + BQ²
where;
ΔP = pressure drop
Q = flow rate
Given that:
9.6 = A12 + B12²
Then
12A + 144B = 9.6 -------------- equation (1)
24A + 576B = 24.1 --------------- equation (2)
Using elimination methos; from equation (1); we first multiply it by 2 and then subtract it from equation 2 afterwards ; So
288 B = 4.9
B = 0.017014
From equation (1)
12A + 144B = 9.6
12A + 144(0.017014) = 9.6
12 A = 9.6 - 144(0.017014)

A = 0.5958
Thus;
ΔP = AQ + BQ²
Given that ΔP = 50 psi
Then
50 = 0.5958 Q + 0.017014 Q²
Dividing by the smallest value and then rearranging to a form of quadratic equation; we have;
Q² + 35.02Q - 2938.8 = 0
Solving the quadratic equation and taking consideration of the positive value for the upper limit of the flow rate ;
Q = 39.46 ft³/hr