In a solution of KBr and water; KBr is the solute and water is the solvent;
Therefore; to achieve 3% by mass; it means we are going to have 3% of the mass being the solute and the other 97 % being the solvent.
Thus; KBr (solute) = 3/100 × 300 (total mass) = 9 g
Hence; the appropriate masses will be; 9.00 g of KBr and 291 g of water.
1.905 moles of Helium gas are in the tube. Hence, option A is correct.
<h3>What is an ideal gas equation?</h3>
The ideal gas law (PV = nRT) relates the macroscopic properties of ideal gases. An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
Calculate the moles of the gas using the gas law,
PV=nRT, where n is the moles and R is the gas constant. Then divide the given mass by the number of moles to get molar mass.
Given data:
P= 4.972 atm
V= 9.583 L
n=?
R= 
T=31.8 +273= 304.8 K
Putting value in the given equation:
=n
n= 
Moles = 1.905 moles
1.905 moles of Helium gas are in the tube. Hence, option A is correct.
Learn more about the ideal gas here:
brainly.com/question/27691721
#SPJ1
Answer:
My guess would be 12.5828
Answer:
Coal is layered because it is a type of sedimentary rock
Explanation: