Answer:11.1
Explanation:
Three significant figures
The original Clean Air Act of 1970 gave the US EPA board authority to regulate motor vehicle pollution and the agencies emission control policies and requirements have become progressively more stringent since then
Answer: Due that we don't know the initial speed after hitting the ball, we are going to accept that the ball goes up for half of the time and then falls during other half part, that is 3.0 seconds each. Then we know that ball's movement is ruled by the acceleration of gravity formula, as follows: H = Vi * T + 1/2 * g * T^2 V = Vi + g * T where: H is height, Vi initial speed, g gravity acceleration and T time When we only consider the second half of the trajectory, we have that initial speed at the top of that movement is zero, because ball goes up till top, where stops and starts to go down, so : H = 0 * 3 + 1/2 * 32 * 3^2 = 144 ft. So the height of the pop-up is 144 feet.
Answer: 2.49×10^-3 N/m
Explanation: The force per unit length that two wires exerts on each other is defined by the formula below
F/L = (u×i1×i2) / (2πr)
Where F/L = force per meter
u = permeability of free space = 1.256×10^-6 mkg/s^2A^2
i1 = current on first wire = 57A
i2 = current on second wire = 57 A
r = distance between both wires = 26cm = 0.26m
By substituting the parameters, we have that
Force per meter = (1.256×10^-6×57×57)/ 2×3.142 ×0.26
= 4080.744×10^-6/ 1.634
= 4.080×10^-3 / 1.634
= 2.49×10^-3 N/m
Answer: 6.12 kg
Explanation:
Since Mass of ball = ? (let the unknown value be Z)
Acceleration due to gravity, g= 9.8m/s^2
Height, h = 1.5 metres
Gravitational potential energy GPE = 90J
Gravitational potential energy depends on the weight of the ball, the action of gravity and height.
Thus, GPE = Mass m x Acceleration due to gravity g x Height h
90J = Z x 9.8m/s^2 x 1.5m
90 = Z x 14.7
Z = 90/14.7
Z = 6.12 kg
Thus, the bowling ball weigh 6.12 kilograms