a) See free-body diagram in attachment
b) The acceleration is 
Explanation:
a)
The free-body diagram of an object is a diagram representing all the forces acting on the object. Each force is represented by a vector of length proportional to the magnitude of the force, pointing in the same direction as the force.
The free-body diagram for this object is shown in the figure in attachment.
There are three forces acting on the object:
- The weight of the object, labelled as
(where m is the mass of the object and g is the acceleration of gravity), acting downward - The applied force,
, acting up along the plane - The force of friction,
, acting down along the plane
b)
In order to find the acceleration of the object, we need to write the equation of the forces acting along the direction parallel to the incline. We have:

where:
is the applied force, pushing forward
is the frictional force, acting backward
is the component of the weight parallel to the incline, acting backward, where
m = 2 kg is the mass of the object
is the acceleration of gravity
is the angle between the horizontal and the incline (it is not given in the problem, so I assumed this value)
a is the acceleration
Solving for a, we find:

Learn more about inclined planes:
brainly.com/question/5884009
#LearnwithBrainly
Answer:
the cochlea
Explanation:
The cochlea contains the spiral organ of Corti, which is the receptor organ for hearing. It consists of tiny hair cells that translate the fluid vibration of sounds from its surrounding ducts into electrical impulses that are carried to the brain by sensory nerves.
B) lever and pulley is the answer
Explanation:
Fluid gauge pressure is:
P = ρgh
where ρ is the fluid density and h is the depth of the fluid.
P = (1000 kg/m³) (9.8 m/s²) (1642 m)
P = 16,091,600 Pa
Rounded to four significant figures, the gauge pressure is 16.09 MPa.