1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
leonid [27]
3 years ago
14

An object is floating in equilibrium on the surface of a liquid. The object is then removed and placed in another container, fil

led with a less dense liquid. What would you observe?
Physics
1 answer:
Anestetic [448]3 years ago
4 0

Answer:

The fraction of its volume inside liquid  is increased .

Explanation:

According to principle pf floatation , an object floats on the surface of water

when the weight of  liquid displaced by it becomes equal to weight of the object . weight of the liquid depends upon the density of the liquid .

In the second case , when the body is dipped into liquid of lesser density , in order to balance the weight of body , more volume of liquid will be displaced so that weight of displaced liquid becomes equal to object's weight . So the body floats with greater depth inside liquid . The fraction of its volume inside liquid  is increased .

You might be interested in
A ride-sharing car moving along a straight section of road starts from rest, accelerating at 2.00 m/s2 until it reaches a speed
liq [111]

Answer:

A) total time = 55.5 seconds

B) average velocity = 25.27 m/s

Explanation:

It starts from rest, so initial velocity, u = 0 m/s

We are given;

acceleration; a = 2 m/s²

Final velocity; v = 31 m/s

From Newton's first law of motion,

v = u + at

So, 31 = 0 + 2t

t = 31/2

t = 15.5 sec

We are told that, after this time of 15.5 sec, the car travels 35 sec at a constant speed and after that it takes 5 sec additional time to stop. Thus;

(a) Total time in which car is in motion = 15.5 + 35 +5 = 55.5 seconds

b)Total distance traveled during first 15.5 sec would be gotten from Newton's second equation of motion which is;

S = ut + ½at²

S1 = 0 + ½(2 * 15.5²)

S1 = 240.25 m

Distance traveled in 35 sec with with velocity of 31 m/sec is;

S2 = velocity x time

S2 = 35 × 31 = 1085 m

Now, for the final stage, final velocity (v) will now be 0 since the car comes to rest while initial velocity(u) will be 31 m/s.

From the first equation of motion,

a = (v - u)/t

a = (0 - 31)/5

a = -6.2 m/s²

So, distance travelled is;

S3 = ut + ½at²

S3 = (31 × 5) + ½(-6.2 × 5²)

S3 = 155 - 77.5

S3 = 77.5 m

So overall total distance = S1 + S2 + S3

Overall total distance = 240.25 + 1085 + 77.5 = 1402.75 m

Average velocity = total distance/total time

Average velocity = 1402.75/55.5 = 25.27 m/s

6 0
3 years ago
What happens when an electron moves from an excited state to the ground state?
Darina [25.2K]
<span>When an electron moves from an excited state to the ground state, "Energy releases"

Hope this helps!</span>
6 0
3 years ago
On Earth, a kangaroo jumping will eventually return to ground due to the unbalanced force of gravity. What law does this illustr
Kryger [21]
Newton’s law is the answer
6 0
3 years ago
Positive Charge Q is distributed uniformly along the x-axis from x=0 to x=a. A positive point charge q is located on the positiv
deff fn [24]

Answer:

 electric field E = - k Q (1 /r(r-a)), force    F = - k Q qo / r (r-a) and force for r>>a    F ≈ - k Q qo / r²

Explanation:

You are asked to find the electric field of a continuous charge distribution, so we must use the equation

       

           E = k ∫dp /r²

Where k is the Coulomb constant that is worth 8.99 10⁹ N m² / C², r is the distance between the load distribution and the test charge, in this case everything is on the X axis.

We must find the charge differential (dq), let's use that uniformly distributed and create a linear charge density

          λ = q / x

As it is constant, we can write it based on differentials

         λ = dq / dx

         dq = λ dx

We already have all the terms, let's  integrate enter its limits, lower the distance from the left end of the distribution to the test charge (x = r) and the upper limit that is the distance from the left end of distribution to the test load ( x = r - a) where r> a

         E = k ∫ λ dx / x²

         E = k la (- 1 / x)

Let's get the negative sign from the parentheses

         E = - k λ (1 / x)

         E = - k λ (1 /(r-a)  -1 /r) = - k λ [a / r (r-a)]

Let's change the charge density with the value of the total charge λ = Q / a

         E = - k Q/a  [a / r (r-a)]

         E = - k Q (1 /r(r-a))

b) We calculate the force.  

         F = E qo

         F = - k Q qo / r (r-a)

c) the force for charge porbe very far r >> a. In this case we can take r from the parentheses and neglect (a/r)

         F = - k Qqo / r² (1 -  a/r)

         F ≈ - k Q qo / r²

6 0
3 years ago
Who is the father of nuclear physics?​
bija089 [108]

Answer: the father of the nuclear physics is Ernest Rutherford

Explanation:

5 0
3 years ago
Other questions:
  • In general it is expected that ________. A) osmotic pressure will remain relatively consistent throughout the capillary bed B) o
    7·1 answer
  • PLEASE HELP ME :)
    10·1 answer
  • PLS PLS PLS PLS PLS PLS PLS PLS PLS HELP FREE POINTS
    10·1 answer
  • Which of the following represents a system that is completely open?
    9·2 answers
  • Help pleaseee is this correct?​
    14·1 answer
  • according to newton's law of universal gravitation, in which of the following situations does the gravitational attraction betwe
    10·1 answer
  • Hi can you help me with this please?
    6·1 answer
  • HELP ME ASAP ITS PHYSICS AND it’s finding the kinetic energy SHOW WORKKK
    6·2 answers
  • PLEASE HELP! URGENT<br><br> Explain how the forces need to change so an aeroplane can land
    13·1 answer
  • Light with a wavelength of 700 nm (7×〖10〗^(-7) m) is incident upon a double slit with a separation of 0.30 mm (3 x 10-4 m). A sc
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!