Sedimentary basins are regions of the Earth where long-term subsidence creates accommodation space for accumulation of sediments. As the sediments are buried, they are subject to increasing pressure and begin the processes of compaction and lithification that transform them into sedimentary rock.
Answer:
I cant find any answers for u unfortunately
Explanation:
hope u find it
The mass of carbon dioxide that would be produced will be 22 kg
<h3>Combustion of carbon</h3>
The combustion of carbon in air can be represented by the equation:
C + O2 ---> CO2
The mole ratio of C to O2 to CO2 is 1:1:1.
Mole of 6kg of carbon = mass/molar mass
= 6000/12
= 500 moles
Equivalent mole of CO2 produced = 500 moles
Mass of 500 moles CO2 = mole x molar mass
= 500 x 44.01
= 22,005 g or 22 kg approximately
More on combustion reactions can be found here: brainly.com/question/13649083
Answer:
Explanation:
Use the ideal gas equation:

Where:
- p is pressure: 0.950atm
- V is volume: unknown
- n is number of moles: unknown
- R is the universal constat of gases: 0.08206 atm.liter/ (K.mol)
- T is the absolute temperature: 345K
Use the <em>molar mass</em> of the gas to include the density in the formula:
- molar mass = mass in grams / number of moles
- ⇒ mass in grams = number of moles × molar mass
- density = mass in grams / volume
- ⇒ density = number of moles × molar mass / volume
- density = (n/V) × molar mass
- ⇒ n/V = density / molar mass
Clear n/V from the gas ideal equation and subsittute with density/molar mass:
- density / molar mass = n/V
- density/molar mass = p/(RT)
- molar mass = density × RT / p
Now you can subsitute the data:
molar mass = (3.50g/liter) × 0.08206 atm.liter/(K.mol) × 345K / 0.950 atm
- Round to the nearest whole number: 104g/mol ← answer
Answer:
<h2>22.366 kPa</h2>
Explanation:
The final pressure can be found by using the formula for Boyle's law which is

Since we are finding the final pressure

From the question
58.6 kPa = 58600 Pa
We have

We have the final answer as
<h3>22.366 kPa</h3>
Hope this helps you