<span>Transmutation
is the process of changing the substance, tangible or not, from one form to the
other. It means the transformation of one element in the periodic table into
another by one or a series of nuclear decays or reactions. One type of transmutation
is nuclear transmutation. Nuclear transmutation is the conversion of one
chemical element or isotope into another though nuclear reactions or nuclear
decay. Second type of transmutation is artificial transmutation. Artificial transmutation
occur in machinery that uses nough energy to cause changes in the nuclear
structure of the elements.</span>
the answer is A. I (iodine)
no worries
Answer:
5.06atm
Explanation:
Using the combined gas law equation;
P1V1/T1 = P2V2/T2
Where;
P1 = initial pressure (atm)
P2 = final pressure (atm)
V1 = initial volume (Litres)
V2 = final volume (Litres)
T1 = initial temperature (K)
T2 = final temperature (K)
According to the information provided in this question;
P1 = 1.34 atm
P2 = ?
V1 = 5.48 L
V2 = 1.32 L
T1 = 61 °C = 61 + 273 = 334K
T2 = 31 °C = 31 + 273 = 304K
Using P1V1/T1 = P2V2/T2
1.34 × 5.48/334 = P2 × 1.32/304
7.34/334 = 1.32P2/304
Cross multiply
334 × 1.32P2 = 304 × 7.34
440.88P2 = 2231.36
P2 = 2231.36/440.88
P2 = 5.06
The final pressure is 5.06atm
Answer:
3 will be the correct coefficient of CaBr2
Explanation:
In balancing a chemical equation, numbers should be assigned to both reactants and products as a numerical coefficients until all atoms of elements in both sides of the equation count equal.
The balanced equation of the reaction will be:
3CaSO4 + 2AlBr3 ==> 3CaBr2 + Al2(SO4)3
Looking at the unbalanced equation in the question, in the product Al2(SO4)3 there are 3 SO4 group. This will warrant putting 3 behind CaSO4 in order to balance the atoms of SO4 group. That operation will automatically put the number of Ca atoms in CaSO4 to be 3 therefore making CaBr2 to have 3 coefficient as in the balanced equation. This is to balance the number of Ca atoms in both sides to be 3.