Differentiate the components of position to get the corresponding components of velocity :


At <em>t</em> = 5.0 s, the particle has velocity


The speed at this time is the magnitude of the velocity :

The direction of motion at this time is the angle
that the velocity vector makes with the positive <em>x</em>-axis, such that

In this problem, we are given that a ball is thrown upward and that it has an initial velocity of 5 m/s. Its path both on Earth and on the moon will be trajectory in nature. This is because while its horizontal velocity is maintained, its vertical velocity increases.
Part of the scientific process involves sharing your results with other scientists. To do this, we all need to use the same measurement system, which you'll learn about in this lesson.
Imagine you're trying to find out how much an elephant weighs. You're pretty sure it weighs a lot, but you don't know the exact number. So you ask your teacher, and she tells you an elephant weighs the same as three hippos.
Well that's nice to know, but how much does a hippopotamus weigh? Again, you ask your teacher, and she tells you a hippopotamus weighs the same as five alligators. That's a cool fact to know, but you still don't understand how much an elephant weighs because comparing elephants to alligators can be confusing.
plz mark me as brainliest :)