Answer:
the time taken for the object to fall is 6 s.
Explanation:
Given;
final velocity of the object, v = 58.8 m/s
initial velocity of the object, u = 0
The height of fall of the object is calculated as;
v² = u² + 2gh
v² = 2gh

The time to fall through the height is calculated as;

Therefore, the time taken for the object to fall is 6 s.
<u>Answer:</u>
Lead
<u>Explanation:</u>
To get the density of the material, the formula would be:
mass divided by volume which is given by
.
Here in this problem, we are given a mass of
which occupies a volume of
.
So plugging the data in the above formula to find the density:
Density =
From the table, we can see that the material is Lead which has a density of 11.3c/cm^3.
Answer:

Explanation:
The resistance of a wire is given by:

where
is the resistivity of the material
L is the length of the wire
A is the cross-sectional area of the wire
1) The first wire has length L and cross-sectional area A. So, its resistance is:

2) The second wire has length twice the first one: 2L, and same thickness, A. So its resistance is

3) The third wire has length L (as the first one), but twice cross sectional area, 2A. So, its resistance is

By comparing the three expressions, we find

So, this is the ranking of the wire from most current (least resistance) to least current (most resistance).
Answer:
If you hold the temperature of an ideal gas constant, what happens to its volume when you triple the pressure? For T fixed, P is proportional to 1/V or V is proportional to 1/P. Tripling P reduces V to 1/3. ... If T is constant, the speeds of the average speeds and kinetic energy of the atomic particles remain constant.
I hope this helps!