Answer:
V = 0.714m/s
Explanation:
Full solution calculation can be found in the attachment below.
From the principle of conservation of linear momentum, the sum of momentum before collision equals the sum of momentum after collision.
Before collision only the train had momentum. After the collision the train and the boxcars stick together and move as one body. The initial momentum of the train is now shared with the boxcars as they move together as one body. The both move with a common velocity v.
See the attachment below for the solution calculation.
<span>Since there is no friction, conservation of energy gives change in energy is zero
Change in energy = 0
Change in KE + Change in PE = 0
1/2 x m x (vf^2 - vi^2) + m x g x (hf-hi) = 0
1/2 x (vf^2 - vi^2) + g x (hf-hi) = 0
(vf^2 - vi^2) = 2 x g x (hi - hf)
Since it starts from rest vi = 0
Vf = squareroot of (2 x g x (hi - hf))
For h1, no hf
Vf = squareroot of (2 x g x (hi - hf))
Vf = squareroot of (2 x 9.81 x 30)
Vf = squareroot of 588.6
Vf = 24.26
For h2
Vf = squareroot of (2 x 9.81 x (30 – 12))
Vf = squareroot of (9.81 x 36)
Vf = squareroot of 353.16
Vf = 18.79
For h3
Vf = squareroot of (2 x 9.81 x (30 – 20))
Vf = squareroot of (20 x 9.81)
Vf = 18.79</span>
The hidden gene is called recessive
Answer:
The answer of this question is =1.258*10-4
Answer:
temperature on left side is 1.48 times the temperature on right
Explanation:
GIVEN DATA:

T1 = 525 K
T2 = 275 K
We know that


n and v remain same at both side. so we have

..............1
let final pressure is P and temp 

..................2
similarly
.............3
divide 2 equation by 3rd equation
![\frac{21}{11}^{-2/3} \frac{21}{11}^{5/3} = [\frac{T_1 {f}}{T_2 {f}}]^{5/3}](https://tex.z-dn.net/?f=%5Cfrac%7B21%7D%7B11%7D%5E%7B-2%2F3%7D%20%5Cfrac%7B21%7D%7B11%7D%5E%7B5%2F3%7D%20%3D%20%5B%5Cfrac%7BT_1%20%7Bf%7D%7D%7BT_2%20%7Bf%7D%7D%5D%5E%7B5%2F3%7D)

thus, temperature on left side is 1.48 times the temperature on right