Answer:
frequency is 195.467 Hz
Explanation:
given data
length L = 4.36 m
mass m = 222 g = 0.222 kg
tension T = 60 N
amplitude A = 6.43 mm = 6.43 ×
m
power P = 54 W
to find out
frequency f
solution
first we find here density of string that is
density ( μ )= m/L ................1
μ = 0.222 / 4.36
density μ is 0.050 kg/m
and speed of travelling wave
speed v = √(T/μ) ...............2
speed v = √(60/0.050)
speed v = 34.64 m/s
and we find wavelength by power that is
power = μ×A²×ω²×v / 2 ....................3
here ω is wavelength put value
54 = ( 0.050 ×(6.43 ×
)²×ω²× 34.64 ) / 2
0.050 ×(6.43 ×
)²×ω²× 34.64 = 108
ω² = 108 / 7.160 ×
ω = 1228.16 rad/s
so frequency will be
frequency = ω / 2π
frequency = 1228.16 / 2π
frequency is 195.467 Hz
"Balanced" means that if there's something pulling one way, then there's also
something else pulling the other way.
-- If there's a kid sitting on one end of a see-saw, and another one with the
same weight sitting on the other end, then the see-saw is balanced, and
neither end goes up or down. It's just as if there's nobody sitting on it.
-- If there's a tug-of-war going on, and there are 300 freshmen pulling on one
end of a rope, and another 300 freshmen pulling in the opposite direction on
the other end of the rope, then the hanky hanging from the middle of the rope
doesn't move. The pulls on the rope are balanced, and it's just as if nobody
is pulling on it at all.
-- If a lady in the supermarket is pushing her shopping cart up the aisle, and her
two little kids are in front of the cart pushing it in the other direction, backwards,
toward her. If the kids are strong enough, then the forces on the cart can be
balanced. Then the cart doesn't move at all, and it's just as if nobody is pushing
on it at all.
From these examples, you can see a few things:
-- There's no such thing as "a balanced force" or "an unbalanced force".
It's a <em><u>group</u> of forces</em> that is either balanced or unbalanced.
-- The group of forces is balanced if their strengths and directions are
just right so that each force is canceled out by one or more of the others.
-- When the group of forces on an object is balanced, then the effect on the
object is just as if there were no force on it at all.
Deer depend on plants to survive because they are herbivores. Herbivores are animals that only eats plants and fruits in order to survive. Deer's meal includes grass and evergreen plants. If grass is unavailable, they eat whatever food like fallen leaves, twigs, bushes and other woody plants.
Answer:
So the conclusion is that in presence of air net force acting downward reduces for feather and hence falls slower than coin. But in absence of air resistance, net downward force is just equal to force due to gravity which is same for both coin and feather and hence they fall down at the same rate.
Can you please translate to English?